UNIVERSITY OF THESSALY

DOCTORAL THESIS

System Support for the Fault Tolerance,
Testing and Orchestration of Drone
Applications

Athanasios (Nasos) GRIGOROPOULOS

A thesis submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Department of Electrical and Computer Engineering

April 12, 2022

https://www.uth.gr
http://inf-server.inf.uth.gr/~athgrigo/
https://www.e-ce.uth.gr/

UNIVERSITY OF THESSALY

DOCTORAL THESIS

System Support for the Fault Tolerance,
Testing and Orchestration of Drone
Applications

Author: Advisor:
Athanasios (Nasos) Prof. Spyros LALIS
GRIGOROPOULOS

A thesis submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Department of Electrical and Computer Engineering

Examination Committee:

Spyros Lalis, Professor, University of Thessaly

Christos D. Antonopoulos, Associate Professor, University of Thessaly
Antonios Argyriou, Associate Professor, University of Thessaly
Nikolaos Bellas, Professor, University of Thessaly

Dimitrios Katsaros, Associate Professor, University of Thessaly
Stathes Hadjiefthymiades, Professor, University of Athens

Kostas Magoutis, Associate Professor, University of Crete

April 12, 2022

https://www.uth.gr
http://inf-server.inf.uth.gr/~athgrigo/
http://inf-server.inf.uth.gr/~athgrigo/
https://faculty.e-ce.uth.gr/lalis/
https://www.e-ce.uth.gr/

[TANEIITXTHMIO OEXYXAATAY

Awdaxtopd Almiwya

Troothelln o eninedo CUOTALAUTOC Yio TNV
ovoy) BhafBadv, doxiuaoTixn Asttovpylo xat

EVORYNOTEWOT| OE EQPUPUOYEC UE UN

ETOVOPWUEVX EVOEQLL oxﬁpaw

Adavdorog (Ndoog) Enpiénov:
I'enyopdmoviog Ko, YXrupldwv-I'epdoiuoc
Adng

Awarteif3n) 1) omola uTOBARUNXE Yiar T1) UEQLXT) EXTANIPWOT TWV UTOYPEMCEWY
amoxTNomNG Tou AbaxTopixol AITAGUATOS

oTo

Turue Hiextpordywy Mnyoavixov xow Mnyovixwy Trnoloylotov

Entapervc eletaotnd| emtpons:

Ermupldwv-T'epdowwoc Adhne, Kodnyntic, Havemotiuo Ococohlac

Xpriotog Aviwvémovhog, Avarinenthc Kadnyntig, Ilavemotiuio Oscoaiiog
Avtoviog Apyuplou, Avaminpewtic Kodnyntie, Havemotruo Ococuiiog
Nuxéhaog Mréhhag, Kodnyntrg, HavemotAuo Ocooaiiog

Anunrteloc Katoopde, Avaminpwtic Kodnyntie, Havemotiuio Ococaiiog
Evotdhoc Xatlneutuwmddne, Kodnyntrc, Havemotiuo Adnvay
Kovotavtivoc Mayxoitng, Avaminewtic Kadnyntic, Havemotiuo KeAtne

12 Ampuliov 2022

http://inf-server.inf.uth.gr/~athgrigo/
http://inf-server.inf.uth.gr/~athgrigo/
https://faculty.e-ce.uth.gr/lalis/
https://faculty.e-ce.uth.gr/lalis/

Declaration of Authorship

Being fully aware of the implications of copyright laws, I expressly state that this
PH.D. dissertation, as well as the electronic files and source codes developed or
modified in the course of this thesis, are solely the product of my personal work and
do not infringe any rights of intellectual property, personality and personal data of
third parties, do not contain work / contributions of third parties for which the per-
mission of the authors / beneficiaries is required and are not a product of partial or
complete plagiarism, while the sources used are limited to the bibliographic refer-
ences only and meet the rules of scientific citing. The points where I have used ideas,
text, files and / or sources of other authors are clearly mentioned in the text with the
appropriate citation and the relevant complete reference is included in the biblio-
graphic references section. I also declare that the results of the work have not been
used to obtain another degree. I fully, individually and personally undertake all le-
gal and administrative consequences that may arise in the event that it is proven, in
the course of time, that this thesis or part of it does not belong to me because it is a
product of plagiarism.

Signed: %/

Date: La /L\ /,(2 022

ii

“The cost of a thing is the amount of what I will call life which is required to be exchanged
for it, immediately or in the long run.”

Henry David Thoreau

iii

UNIVERSITY OF THESSALY

Abstract

Department of Electrical and Computer Engineering
Doctor of Philosophy

System Support for the Fault Tolerance, Testing and Orchestration of Drone
Applications

by Athanasios (Nasos) GRIGOROPOULOS

The continuous technological advances in embedded platforms and control systems
have made unmanned aerial vehicles (drones) on the one hand more autonomous
in their operation, combining computing capabilities, advanced navigation systems
and obstacle avoidance systems, and on the other hand more affordable, paving the
way for their use in many application fields, such as surveillance, monitoring and
cargo delivery. Although drones can now be programmatically controlled via high-
level commands, their smooth integration in the existing cyber-physical infrastruc-
ture is hampered by several factors including inherent safety and privacy concerns
and the lack of automation in the (complete) drone operation lifecycle. To address
this issue, in this thesis we present system-level mechanisms for strengthening the
robustness of drone applications and promoting a more structured, managed and
automated application development and deployment approach, properly integrated
with the cloud and edge computing paradigms.

In the first part of the thesis, we focus on tolerating failures critical to the target
mission in application scenarios where a centralized mission controller entity is re-
sponsible for executing the application logic by coordinating a team of drones via
high-level commands. We propose an active replication scheme combined with
checkpointing and logging of communication and system status information for tol-
erating fail-stop failures, where the controller simply stops its operation. We show
that in case of deterministic application programs the overhead introduced by our
solution occurs only in case of drone failures and depends on the size of the logs
that need to be exchanged between the controller replicas. Our solution also sup-
ports non-deterministic applications through a semi-active replication approach, in
which case the overhead is analogous to the size of the execution state produced
during the non-deterministic operations. Next, we use active replication with an
agreement protocol to address Byzantine failures, the most general type of failures,
where the controller behaves arbitrarily due to malicious attacks or hardware and
software errors. Our approach relies on synchronous communication with signed
messages and requires N = 2 x f + 1 replicas to tolerate up to f failures. We show
that the introduced overhead comes mainly from the agreement protocol and can be
greatly reduced by using a faster network for the communication between the repli-
cas of the coordinator (a realistic assumption). Also, while the cost for typical setups
is relatively high, at the range of tens of milliseconds, it is not prohibitive since the
mission controller is not involved in tight control loops of the drones themselves.

HTTPS://WWW.UTH.GR
https://www.e-ce.uth.gr/

v

In the second part of the thesis, we look at how to assist drone application developers
and users in the application deployment, monitoring and testing processes while en-
suring that certain safety and privacy restrictions are not violated. To address these
needs in a cost-effective manner, we adopt the platform as a service (PaaS) paradigm
of cloud computing and view drones as a resource that can be accessed through a
shared infrastructure. Firstly, we present a holistic approach towards supporting a
more reliable managed operation of single-component drone applications through a
software platform that takes care of the automated deployment and controlled exe-
cution, coupled with corresponding simulation and digital twin support. Differently
to other efforts, the monitoring mechanisms do not concern only the "where" drones
are allowed to operate, but also take account of the "how" their onboard sensing
and actuation equipment is used. We also demonstrate the provided functionality
through representative case studies using both the simulation environment where
we perform a variety of tests before deployment, and the digital twin setup where a
virtual representation runs in parallel with the application in the real world, provid-
ing the ability to evaluate, verify and even predict the behavior of the system. In the
following, we expand various dimensions of the concept to distributed, component-
based applications that span over the entire system continuum, including drones,
edge nodes and the cloud. We present an orchestration framework that enables the
high-level description of application requirements through suitable specifications
that accompany the component code, supports the drone mission-aware deploy-
ment of the components, promotes the efficient communication between interacting
components by transparently exploiting wireless networking technologies for direct
communication and ensures safety- and privacy-preserving operations through the
policy-based access to mobility and sensor services. We demonstrate the provided
functionality via both field tests and the simulation environment. Further, through
extensive performance evaluation, we show that our implementation has an accept-
able resource footprint making it suitable even for the constrained computing plat-
forms found on drones and edge nodes.

I[TANEIIIYXTHMIO OEXXAAIAY

[Teptindn

Turuo Hhextpordywv Mnyavixey xow Mnyovixoyv Trohoyiotody
Awoxtopind AlmAnuo

TrootheiEn oe eninedo cuoTAUNTOS Yior TNV avoy Y| BAaBdv, SoxiuaoTtiny Asttoupylo xou
EVOPYNOTEWOT) O EQYUPUOYES UE UT) ETOVOPWUEVI EVIEQLAL OY AT

Adavdoioc (Ndooc) Ienyopdmouhog

Ou ouveyelc teyvoloynés e€eMEEC OE EVOWUUTWUEVES TAUTPOPUES Xl GUCTAUOTO €-
AEYYOU €YOUV XATACTAOEL To N eTavdpwuéva evagpta oyfuata (drones) agevoc mo
auToVoUa oTYN Aertoupyiot Toug, cLVBUALOVTOC UTONOYICTIXEC BUVATOTNTES, TEONYUEVY
CUCTARATO TAONYNONG X0 CUC TAUATO OTOPUYNG EUTODIWY, Yol APETEQOV TLO TEOGCLTY
amd owovouxhc drnodng, dleupbivovtag To Tedlo yenone Toug oe BLdPopous TouElc Epop-
HOY @Y, OTWS 1) EMLTAENOT, 1) TOEAXOAOVINCT X0 1) LETAUPORE-Topdd00T popTityv/oryarddhv.
Av xou ta drones unopolv TAEoV Vol EAEYYOVTOL TROYEUUUATIO TS UEGK EVIOAGY LPNAOL
EMTEDOU, 1) OUOAT) EVOWUATWOT TOUC GTNY UTHRY0LUGA XUBEEVO-PUGLXT) UTOBOUT TUREUTO-
oilean amod Bidpopoug maEdyYOVTES, OTKE elvol oL EYYEVEIC avnouyiEe oYETXE UE TOUG Xiv-
dUvoug acaheiog xat T TpocTacia TS WL TIXOTNTAUC XM Xat 1 EAAELYT aUTOUATIONOV
otov (mAfen) xOxho Aettoupyiag tou drone. T tnv avtipetdnion v avwtépw {nn-
HdTwv, ot auTh TN BlaTE3| THEOUGLACOUUE UNYAVIOUNOUS O ETIMEDO CUCTHUATOS Yol TNY
evioyuon e allomotiog/eupwotioc TV epappoy®y drone xat TV TpodInoT pag o
BOUNUEVNG, EAEYYOUEVNC XalL QUTOUATOTOMNUEVNS TROGEYYIONC OVATTUENG XOU EYXAUTAC T
oNg EPoPUOY®Y, 1) omtola Vo elvor dprovixd GUVBESEUEVT] UE TOL UTOAOYLO TIXA TEOTUTIOL TTOU
oaxoloudolviar 6o utohoyloTixd vépos (cloud) xon ot dxpa Tou Bixtiou (edge).

Y10 mpw1o pépog TNng SlateBg, E0TICOVUE OTNY AVOY T CPOAULTWY XEioUwWY Yiol TNV
TEO000 TNE AMOGTOATG OE GEVIQLNL EPUPUOYMY OTOU Lol XEVTEIXT] UTOAOYLO TIXT| OVTOTNTA,
eEAEYATY| Moo TOAAC Elvor LTEG YUV Yo TNV EXTEAEST) TNS AOYLXNC TNG EQUPUOYTC CUVTO-
viovtoc wa opddo drones péow eviodwmy uhnhot emmédou. Ipoteivouyue éva oyfua evep-
YoU mheovaopo (active replication) oe cuvbuaoud pe teyVixéc amoixeuonc onueinmy
ehéyyou e xotdotaong tou cuoTAuato (checkpointing) xou xatarypaghc TANEOPoELOY
emxowvwviog (logging), ue oxond ty avoyh PraBov anotuylac-otopatiuatoc (fail-stop
failures), 6mou o eheyxtric oA oTopatd T hettoupyia Tou. Actyvoupe 6Tl oe TEpinTE-
O1) VIETEQUIVIO TIXWY TEOYRUUUATWY EQIpUOYHS, 1 AOon wog elodyet emPBdpuvor uévo oe
Tep(nTwoN Tou Topouctdoel BAABN xdmoto drone xon eCoptdTon and To péyedog TwV op-
YELWY xaTAYEUPTC TOU TEETEL VoL avTaA XYoLV PETOEY TV AVTLYEAPOY TOU EAEYXTH.
H Ao pog urootneilel emlong un VIETEPUIVIO TIXES EQUPUOYES UECWL ULIC TROGEYYLONG
NU-EVERYOU TAEOVAGUOU, OTIOL TO XOGTOC EVOL AVIAOYO UE To PEYEDog TNG XUTACTACNS
EXTENECTC IO TOPAYETOL XAUTE TIC U1 VIETERPUIVIO TIXES AEtTOURY(EC. X TN GUVEYELN, YENOL-
HOTIOLOUUE TNV EVEQYT| AVATORAYWYT| UE EVOL TRWTOXOANO GUUPWVIAS VIOl TNV AV TIUETWTLON
Bulavtivev Brofov (Byzantine failures), tou mo yevixol t0mou aotoyidy, 610V o €-
Aeyxtrg umopel vor cupmeptpépeTton autalpeTor AOYw XoxOBoVALY EMIECEWY 1) GQUAUATODY
uAoU xan Aoytouxol. H npocéyyion pag Bacileton oe utodéoeig alyypovng emxovwvia
ue umoyeypopuéva unvopora xou anawtel N = 2 X f 4+ 1 avtiypaga yio tnv ovoyt| €6

Vi

xou f BroBidv. Aelyvouue 6Tt T0 ELOoYOUEVO GUVOAIXS *OGTOC TROERPYETOL XURIWS Ao TO
TEWTOXOMNO GUUPOVING xou UTOREL Vo UELVEl oNUavTIXd Y ENOHLOTOLOVTIS £Val TayUTERO
0lxTuo Yot TNV emxovwvia UeTagd TOV AvTLYPdP®Y TOU GUVTOVIGTH - X4TL To oTolo umo-
tehel wa peohiotixd vnddeon. Emlong, evd 1o xdotog yior tumixée ouviixes/puduioeic
elvon oyetixd LPNAG, 610 VPO TWV BEXABWY YLAOGTMOY TOL BEUTEPOAETTOU, BEV Elvol
ATAYOPEVUTLXO OEDOUEVOU OTL O EASYXTHG AMOCTOAAG OEV EUTAEXETAL OE YAUUNAOU ETUTEDOU
Beodyoug eréyyou oyetlOUevous Ye TNy TTnTixy Aettoupyia tou drone.

Y10 debtepo pépog g dateiPne, e€etdloupe TpdTOLE Xan TEYVIXES Tou Yo Porniocouy
TOUC TPOYPUUUOTIO TEC X0 TOUC YPNOTES eQapupoy®Y yia drone oTic dodixacieg avdmtu-
&ne, mapoxohoinong xou BOXWAC TV EQPAUPUOYQY, Slc@ahilovtag mapdhhnho 6Tl OeV
ToEAPBLECOVTOL GUYHEXQIIEVOL TEQLOPLOMOL ACPIAELNS xou WLWTXOTNToC. Lo vor arvTuye-
TOTICOUUE AUTES TIG OVAYXES PE EVaY OLXOVOUIXE omodoTxd /Prdotpo tpdmo, uodetodue
™V TPocEyYlon TN mAatpdpuac we utneeoia (PaaS) nou yenotwonoeitan oto cloud
xou avtetonilovye to drones wg dAhov €vov LTOAOYIGTIXG TOPO GTOV OTOLO UTOEEL
XAmolog VoL €yEL TEOCPUCT HECW ULIC XOWOYENoTNS uTtodoung. Apyixd, nopouctdalouue
Lot OMO T TROGEY YIoT YLl TNV UTOG THELEN TNG To A€LOTLOTNG XAk EAEY Y OUEVNC AELTOUE-
Yiog «povooUGTUTIXOVY EQupUoY®Y Yoo drones Yéon pLog TAATPOPUAS AOYLoUIXO) TOL
(peovTIlEL Yol TNV OUTOUATOTOMNUEVT] EYXATACTACT] ol TNV EAEYYOUEVT EXTEAECY| TOUG,
GE GUVOLOOUO UE TNV TUEOY T XATIAANANG UTOGTARIENG TEOCOUOIOOTG Xl TEYVOAOYLoG
dnpraxcdv Bd0uwy. Xe avtiieon pe dhhec mpoonddeiee, oL unyaviopol Topoxorolinong
0EV aoPOLY UOVO TO «TOUY ETUTEETETAL VoL AetToupyolV Tor drones, oAAd Aaufdvouy e-
TTAEOV UTOYN TO TSy YENOWOTOLETOL 0 EEOTAOUOC Ao UNTARWY XAl EVERYOTONTKOY
mou OlodéTouy. Emdeuviouue TNy TOpeYOUEVY] AELTOURYIXOTNTA HECW AVTITPOCWTEUTI-
AWV TAPASELYUATWY YENONG YENOHOTOLOVTIS TOC0 TO TERYSEIANOV TPOCOUOiwoNS OO
exTEAOVUE €V EVPOC BOXIUWY TPV OO TNV EYXATACTACT TG EQPUPUOYNS, OGO XL TOV
oy SBUwY Omou plar exovixy| avamapdotoon tou drone exteleltan TOEIAANAN
UE TNV EQUEUOYY| OTOV TEUYUATIXO XOOUO, TOREYOVTUS TN dUVITOTNTO a&lOAGYNONS, €-
mohdevone ohhd xou TEOPAEYNC TNC CUUTEQLPOREAS TOU CUGTAUATOS. XTN GUVEYELD,
eMEXTEIVOUUE OLAPOPEC BLICTACEIS AUTAC TNG YEVIXNC LOEUG OF XAUTUVEUNUEVES EQUQUO-
Y€C TOU AMOTEAOUVTOL Amd TOAAATASL TUAUATA Tal omolo Umopoly va eyxatacToadoly ot
ONOXATIPO TO GUVEYEC TWV UTOAOYLOTIXWY CUCTNUATWY, cuuteptlopBavouévewy drones,
xouPwv oto edge xou tou cloud. Ilopoucidloupe éva TAoiclo evopyNoTewoNg Tou ETL-
TEETEL TNV TEELY PPN LYNAOL ETUTESOL TWV AMAUTHOEWY TNE EPUPUOY NS UECE XATIAANALY
TEOBLAYPAUPEY TOU GUVODBEVOUY TOV XMOIXA TwV TUNUATWY TNG EQUEUOYTS, unootneilel
TNV EYXATACTAOT TWV TUNUATWY TN EQPAPUOYNS AopfBdvovtac uTodr TNV anOGTOAR TOU
drone, mpodyel v anoteAeouotixy emixovwvio HETOED GAANAETUOPOVTIWY TUNUSTWY -
CLOTIOLOVTAC TEYVOROYIEC aGUPUITNG OIXTUWONS Yol GUECT] ETUIXOWVMVIO UE Bloparvy| TEOTO
xou SLao@oklel T BlaThENoT TNG ACPIAELIS XOL TNV TEOCTAGIN TNE WBLOTIXOTNTIC UECH
NS TEOGBACTC TWV EQPUPUOYOY OE UTNEECIES XVNTIXOTNTUC X0t atoINThewY Bdoel ToAT-
xwv. Emdencviouye tny TogeyOUEV ASLTOLRYIXOTNTA TG0 PHEGW BOXUWY OTO TEdD OGO
xaL u€ow Tou mepBdAAoVTOC Tpocouolnong. Emmiéov, yéow extetopévng allohdynong
anodoong, Setyvoupe OTL 1 UAOTOMNGY| HoG EXEL AMOBEXTESC UTOAOYIO TIXES AMOUTHOELS, X0
VO TOVTOG TNV XATIAANAT) 0XOUT] X Y10l T TERLOPIOUEVY BUVATOTHTWY UTOAOYIC TIXES
TAaTpopUES oL cuvavTOvTar ot drones xou oe x6uPouc oto edge.

vii

Acknowledgements

I first and foremost thank my advisor Spyros Lalis. He has been exceptional in men-
toring me over the years, from my undergraduate studies to the completion of this
thesis, and I owe to him most of what I know about doing research. I am also grate-
ful to Assoc. Prof. Christos D. Antonopoulos, Assoc. Prof. Antonios Argyriou, Prof.
Nikolaos Bellas, Assoc. Prof. Dimitrios Katsaros, Prof. Stathes Hadjiefthymiades
and Assoc. Prof. Kostas Magoutis for accepting to participate in the Examination
Committee of my thesis and approving my work.

Many thanks go to my long-time colleague Manos Koutsoubelias for being a great
discussion partner on a wide range of subjects; sharing my ideas and doing research
with him for the past decade has been a wonderful experience. Special thanks also
go to my friend and colleague Konstantinos Parasyris for the enjoyable moments
that helped ease the burden of research. My thanks are extended to all members of
the Computer Systems Lab for contributing to a pleasant working environment.

On a more personal level, I wish to thank my closest friends and especially Giannis
K., Dimitris D., Lazaros L. and Evangelia N. for being supportive in all of my deci-
sions for over fifteen years and for making life outside of studies and research really
interesting.

Finally, my deepest gratitude goes to my family: my parents, Spyros and Evanthia,
and my sister Alexia-Iris. Their unconditional love, moral encouragement and belief
in me throughout my life and my long academic pursuits have been invaluable.
The least I can say to them is a big “thank you”. Last, I am extremely grateful to
Eva Evangeliou, who I already consider part of my family. Eva has supported me
throughout the years, listened my research presentations at home and helped me
improve them, but most importantly has helped me to evolve personally.

The work in this thesis has been supported by various funding agencies to which
I am grateful for offering the financial means to stay focused to my research and
pursue my PhD uninterrupted. These include the European Commission through
the RAWFIE project (Road-, Air- and Water- based Future Internet Experimentation)
of the Horizon 2020 Framework Programme (Grant Agreement No 645220, period:
2016-2018), the Greek Secretariat for Research and Development through the PV-
Auto-Scout project under the Research—Create-Innovate call (code TIEDK-02435,
period: 2018-2020 & 2021-2022) and the University of Thessaly through the Research,
Innovation and Excellence (DEKA) Scholarship Program (period: 2020-2021).

viii

Publications

The results, the ideas and figures are included in the following publications:

[1]

(2]

3]

[4]

[5]

Nasos Grigoropoulos and Spyros Lalis, “Fractus: Orchestration of Distributed
Applications in the Drone-Edge-Cloud Continuum”, in Proc. 46th IEEE An-
nual Computers, Software, and Applications Conference (COMPSAC 2022), to appear,
June 27-July 1, 2022.

Nasos Grigoropoulos and Spyros Lalis, “Simulation and Digital Twin Support
for Managed Drone Applications”, in Proc. 24th IEEE/ACM International Sympo-
sium on Distributed Simulation and Real Time Applications (DS-RT 2020), Prague,
Czech Republic, pp. 198-205, September 14-16, 2020.

Nasos Grigoropoulos and Spyros Lalis, “Flexible Deployment and Enforcement

of Flight and Privacy Restrictions for Drone Applications”, in Proc. 50th IEEE/IFIP
International Conference on Dependable Systems and Networks Workshops (DSN-W

2020), International Workshop on Safety and Security of Intelligent Vehicles (SSIV),

Valencia, Spain, pp. 110-117, June 29 - July 2, 2020.

Nasos Grigoropoulos, Manos Koutsoubelias and Spyros Lalis, “Byzantine Fault
Tolerance for Centrally Coordinated Missions with Unmanned Vehicles”, in Proc.
17th ACM International Conference on Computing Frontiers (CF 2020), Catania, Sicily,
Italy, pp. 165-173, May 11-13, 2020.

Nasos Grigoropoulos, Manos Koutsoubelias and Spyros Lalis, “Active Repli-
cation for Centrally Coordinated Teams of Autonomous Vehicles”, in Proc. 15th
International Conference on Distributed Computing in Sensor Systems (DCOSS 2019),
Santorini, Greece, pp. 114-122, May 29-31, 2019.

In addition, our research efforts within the same period led to the following publi-
cations that are relevant to the research in this thesis but not directly related to the
main subject:

6]

[7]

8]

Manos Koutsoubelias, Nasos Grigoropoulos, Giorgos Polychronis, Giannis Ba-
dakis and Spyros Lalis, “System Architecture for Autonomous Drone-based Re-
mote Sensing”, in Proc. 18th EAI International Conference on Mobile and Ubiqui-
tous Systems: Computing, Networking and Services (MobiQuitous 2021), Virtual, pp.
220-242, November 8-11, 2021.

Manos Koutsoubelias, Nasos Grigoropoulos and Spyros Lalis, “A Modular Sim-
ulation Environment for Multiple UAVs with Virtual WiFi and Sensing Capabil-
ity”, in Proc. 2018 IEEE Sensors Applications Symposium (SAS 2018), Seoul, South
Korea, March 12-14, 2018.

Manos Koutsoubelias, Nasos Grigoropoulos and Spyros Lalis, “Virtual Sensor
Services for Simulated Mobile Nodes”, in Proc. 2017 IEEE Sensors Applications
Symposium (SAS 2017), Glassboro, NJ, USA, March 13-15, 2017.

iX

Contents

Declaration of Authorship i
Abstract iii
epiindn \4
Acknowledgements vii
Publications viii
1 Introduction 1
1.1 Motivation and Problem Statement 1
12 Contributions L o 2
1.2.1 Fault tolerance techniques in coordinated drone missions. . . . 3

1.2.2 Managed operation, testing and integration of drone applica-
tions 4
1.3 ThesisOutline o 5
2 Experimental Tools 6
2.1 Introductionand Outline 6
22 HardwareTestbed L oo oL 6
2.3 Simulation Environment 0 o000 8
2.3.1 Provided functionality 0L 8
232 Systemoverviewo oL 9
24 Conclusion 11
I Fault Tolerance Techniques in Coordinated Drone Missions 12
3 System Model for Coordinated Drone Missions 13
3.1 Basicmodel 13
32 Extendedmodel o oo 15
4 Tolerance of Fail-Stop Failures Using Active Replication 17
41 ContributionsandOutline 17
42 SystemModel o 17
4.3 Fault Tolerance Mechanisms 18
43.1 Replication properties, . 18
432 Fault-freeoperation 19
43.3 Duplicate requestshandling 19
434 Nodefailures 21
435 Replicafailures 24

43.6 Garbage collection of log entries 24

4.3.7 Indicative operation sequence diagrams 25

43.8 Non-deterministic execution 26

44 Implementation 27
45 BEvaluation 28
451 Experimentalsetup 28
45.2 Service call delay in deterministic execution 28

45.3 Replica synchronization delay on node failures 29
454 Service call delay in non-deterministic execution 30

5 Tolerance of Byzantine Failures 32
51 Contributionsand Outline 32
52 SystemModelo 32
5.3 Byzantine Fault Tolerance Mechanisms 33
5.3.1 Fault tolerance properties, 33

532 Solutionsketch 34

53.3 Basicserviceinvocation 0L 35

53.4 Faultfreeoperation 35

535 Corruptrequests 36

5.3.6 Out of sync and omitted requests 37

537 Nodefailures 38

54 Implementation 39
55 Evaluation 41
55.1 Experimentalsetup 41

552 Basiccosts oo oo 41

553 Nodeinvocationoverhead 42

554 Resultsdiscussion 42

6 Related Work 44
6.1 Tolerance of Fail-Stop Failures 44
6.2 Byzantine Fault Tolerance 45
6.3 Fault Tolerance in Robotic Systems 46

II Managed Operation, Testing and Integration of Drone Applications
47

7 Flexible Deployment and Safe Operation of Drone Applications 48
71 Contributionsand Outline 48
72 Concept. e 49

721 Objectives 49
7.2.2 Main entities and stakeholders 50
73 PaaSApproach 51
731 Overview 52
7.3.2 Structured descriptionso oL 53
74 Simulation and Digital Twin Approach 56
741 Overview 56
74.2 HITL and SITL configurations of v-drones 57
743 Offline platform testing 58
7.4.4 Offline applicationtesting 58
7.4.5 Digital twin for application checking at runtime 59

7.5 Implementation 60

7.5.1 Platformasaservicesystem.
Management controller
Droneenvironment.

7.5.2 Simulation and Digital Twin

7.6 Evaluation

7.6.1 Offline simulation experiments

7.6.2 Runtime real-world testing

8 Orchestration of Distributed Drone-Edge-Cloud Applications
8.1 Contributionsand Outline
8.2 Motivationand Concept
83 FractusOverview
8.4 Resource Descriptions 0L
8.4.1 Nodedescriptions
8.4.2 Policy descriptions o L oL
8.4.3 Application and component descriptions
8.5 Application Deployment L L.
8.6 Network and Application Flow Management
8.7 Access of Sensor and Mobility Services
8.8 Implementation L.
89 Evaluation
8.9.1 Resource usage and performance overheads
89.2 Fieldexperiments.
8.9.3 Simulation experiments 0oL

9 Related Work
9.1 Edge-related Application Architectures & Orchestration.
9.1.1 Edge computing platforms
9.1.2 Drone-specificplatforms
9.1.3 Network management
9.2 Testing of Drone Applications
921 Dronesimulators
9.2.2 Assessment of cyber-physical systems

10 Conclusions and Outlook
101 Summary L
10.2 Future Work e

Bibliography

xi

60
61
62
63
65
65
67

70
70
71
73
74
74
75
76
79
83
85
87
88
89
93
95

99
99
99
100
102
103
103
104

106
106
108

110

xii

List of Figures

21
2.2

3.1
3.2
3.3

4.1

4.2
43
44
4.5
4.6
4.7

51

52
5.3
54
55
5.6

7.1
7.2
7.3
7.4

7.5
7.6
7.7
7.8

7.9

7.10
7.11

8.1

Drone setup used in the field and lab experiments 7
Architecture overview of the simulation environment 9
System model for coordinated drone missions 13

Information flow between the mission controller and the nodes (drones) 14
Organization of the communication for the active replication of the
mission controller 15

Overview of the system entities, their interactions and the introduced

mechanisms L 19
Flowchart of extended service call process 23
Invocation of the same node service by two replicas 25
Replicas synchronization on node failure 26
Service call delay in the absence of node failures 29
Replica synchronization delay on node failure 30
Checkpointing delay in non-deterministic execution 31

Overview of the system entities, their interactions and the introduced

mechanisms L L 34
Node invocation with correct replicas 36
Node invocation with a corruptrequest 36
Node invocation with ill-timed requests 37
Invocation with anode failure 39
Software architecture of the prototype 40
Main entities, stakeholders and relationships 51
Main system components and basic interactions 52
Application deployment and monitoring process 53
High-level view of the framework providing simulation and digital

twin support for the PaaS platform 57
Simulated setup with HITL and SITL configurations 58
DT/SITL v-drone configuration 60
Software architecture of the system prototype and basic interactions . 61
Simulation experiment with the monitoring mechanism disabled (red

line) vs enabled (blueline), 66

Sequence of images captured by the application between WP2 and
WP4 (crossed out images are suppressed with monitoring mechanism

enabled) 67
Hexacopter used in the real-world experiment for the runtime checking 68
Runtime checking experiment 69

Application structure and indicative deployment based on the require-
ments of eachcomponent 72

8.2
8.3
8.4

8.5
8.6
8.7
8.8
8.9
8.10
8.11

8.12
8.13

8.14

Fractus architecture and indicative deployment 74
Sequence of application deployment 79
Requirements-aware networking of interacting components in the traf-

fic monitoring application L 0L 84
Policy-based serviceaccess L. 86
Hardwaretestbed L 89
Memory and CPU usage in differentsetups 90
Invocation latency for SECURE vs INSECURE setups 91
Service access overheads caused by different policies 92
Overview of the field experiment 94
Drone altitude for normal execution and when the application vio-

lates the limits with vs without policies, 95
Simulationsetup o 96
Simulation experiment showcasing the requirements-aware applica-

tion deployment and networking o 0oL 97

Deployment overhead of Fractus (y-axis inlogscale) 98

Xiv

List of Tables

51
7.1

8.1
8.2
8.3

Actual costs of node invocation (worst-case) 42
Client API of the management controller 62
Generic and resource-specific service policies 77
Basic system services APL o oL 86

Camera setups used in the experiments 92

XV

List of Abbreviations

API
BFT
BLE
CPS
CPU
CRUD
CSMA
Daa$
DMTCP
DT
Faa$S
FDM
FIFO
GCBRR
GCS
HBICT
HITL
IMU
IoT

IP
JSON
KVM
LAN
LTE
LXC
LXD
MAVLink
MAVProxy
NFV
PaaS
PBFT
PHC
PTP
QoS
REST
ROS
RPC
SDN
SITL
SSL
TCP
TeColLa

Application Programming Interface
Byzantine Fault Tolerance
Bluetooth Low Energy
Cyber-Physical Systems

Central Processing Unit

Create, Read, Update and Delete
Carrier-Sense Multiple Access
Drone as a Service

Distributed MultiThreaded CheckPointing
Digital Twin

Function as a Service

Flight Dynamics Model

Fist in, First out

Group Coordinated Broadcast-Based Request-Reply
Ground Control Station

Hash Based Incremental Checkpointing Tool
Hardware-in-the-Loop

Inertial Measurement Unit
Internet of Things

Internet Protocol

JavaScript Object Notation
Kernel-Based Virtual Machine
Local Area Network

Long Term Evolution

Linux Container

Linux Container Daemon

Micro Air Vehicle Link

MAVLink Proxy

Network Functions Virtualization
Platform as a Service

Practical Byzantine Fault Tolerance
PTP Hardware Clock

Precision Time Protocol

Quality of Service
Representational State Transfer
Robot Operating System

Remote Procedure Call

Software Defined Networking
Software-in-the-Loop

Secure Sockets Layer
Transmission Control Protocol
Team Coordination Language

TLS
UAV
UDP
UE
USB
uv
VIP
VM
VPN
v-GS
WiFi
WLAN
YAML

Transport Layer Security
Unmanned Aerial Vehicles
Unreliable Datagram Protocol
User Equipment

Universal Serial Bus
Unmanned Vehicles

Virtual IP

Virtual Machine

Virtual Private Network
virtual Ground Station
Wireless Fidelity

Wireless LAN

YAML Ain’t Markup Language

XVi

Chapter 1

Introduction

1.1 Motivation and Problem Statement

The continuous advances in sensors, control systems and embedded computing
have enabled the development of many different types of unmanned vehicles (UVs)
with considerable navigation and obstacle avoidance capabilities, leading to higher
levels of autonomy [172]. Such platforms constitute a radical expansion of the cyber-
physical systems landscape, which revolutionizes existing applications and will pos-
sibly give rise to new ones. In particular, unmanned aerial vehicles (UAVs), com-
monly known as drones, while in the past were used almost exclusively either for
military and law enforcement purposes or by hobbyists, are now increasingly being
employed in various application domains, spanning from surveillance, agriculture
and cargo transport to the inspection of critical infrastructure and smart-city appli-
cations [157, 11]. Moreover, drones have become quite significant in terms of busi-
ness. The drone market is estimated at USD 27.4 billion in 2021 and is projected to
reach USD 58.4 billion by 2026, at an annual growth rate of 16.4%, with the key fac-
tors driving the market growth being the increasing demand for drones in civil and
commercial sectors, as well as the rising demand for contactless last mile deliveries
of medical supplies and other essentials [111]. In this thesis, we focus on smaller
drones that can perform flexible maneuvers, such as typical multicopters with verti-
cal take-off and landing capability. However, there are various challenges than need
to be addressed to realize the full potential of drone technology and overcome safety
and privacy concerns.

Automation in the full drone operation cycle. Until recently, the majority of drone
missions used to be human-operated and required substantial control with special-
ized ground control stations. The rise of drone platforms that can be controlled
in a more automatic way through high-level commands issued by computer pro-
grams, led to the creation of several programming abstractions and languages in
order to simplify the development of drone missions/operations. These program-
ming frameworks span from the control of a single drone [149, 38], to the control
of multiple drones, either in a distributed way [130], or in a centrally coordinated
manner [85]. However, drone applications to a significant extent still require hu-
man intervention in several stages of their operation, ranging from the application
deployment to the toleration of non-catastrophic failures, hindering the creation of
fully automated drone-based systems.

Cost of drone ownership and operation. While commercial off-the-shelf drones
have become relatively cheap, specialized drones built with durable materials or

Chapter 1. Introduction 2

carrying high-end equipment remain financially unapproachable for most small-
to-medium companies [68]. On top of the acquisition cost, come the licensing, in-
surance and maintenance costs, which are non-negligible [40]. Moreover, as any
technology-based product, drone platforms may quickly become obsolete and fre-
quent upgrades will most likely be needed if one wishes to have cutting-edge equip-
ment. Thus, all the above costs have to be amortized within a relatively short period
of time, which is hard unless one achieves a high utilization of the drone.

Management of drone operations. Recent regulations from aviation safety agencies,
e.g., European Union’s EASA [39], set the basic framework for the safe operation of
drones, paving the way for their integration even in the urban environment, which
was long ago believed to be science fiction. However, the upcoming coexistence of
multiple drones flying over citizens and private properties raises several safety and
privacy issues due to the possible crashes, collisions and the uncontrolled usage of
the drone’s onboard sensing equipment [170, 177, 118]. Even though most countries
have formal processes for submitting flight plans and getting approval, in many
cases there are no well-integrated mechanisms ensuring that the approved flight
plan is followed. Moreover, low altitude airspace management systems [121, 158]
focus almost exclusively to safety-related spatial restrictions and do not consider
privacy-specific constraints related to the sensors usage. Inevitably, this leads to
skepticism regarding drone-based systems, limited public acceptance and even to
extreme reactions by people opposed to drone usage [120].

Integration with existing computing infrastructure. Even though drones can carry
powerful, small form factor onboard computers, in various cases it is essential to
interact with existing ICT infrastructure in order to augment their computing capa-
bilities by offloading heavyweight computations and utilizing the ample persistent
storage, as well as with nearby Internet of Things (IoT) edge deployments to incor-
porate data from different sources and achieve better responsiveness [19]. Ideally,
this cooperation should be smooth, straightforward and should take place under
a variety of wireless communication technologies transparently to the application
programmer. In practice, however, such kind of applications are currently being de-
ployed in an ad-hoc manner requiring high human involvement and are by nature
customized for specific setups, which makes them inflexible in adapting to different
environments or changing conditions.

1.2 Contributions

The aim of this thesis is to address the challenges mentioned above by answering
the following questions:

1. How to offer more dependability to drone operations and strengthen their
overall automation capability?

2. How to support the flexible and automated deployment and testing of drone-
based applications while ensuring their smooth integration in the cyber-physical
infrastructure?

Towards these goals, we have designed, developed and evaluated system-level mech-
anisms focused in two distinct directions: (i) the toleration of failures that are critical
to the application progress, in order to minimize the need for human intervention
and thus make automated drone missions more robust; and (ii) the promotion of a
structured and managed application deployment, operation and testing approach

Chapter 1. Introduction 3

that enforces the compliance to safety and privacy restrictions and enables the effi-
cient and transparent interaction with other computing resources that are available
in the cloud as well as at the edge. In the following we give an overview of the main
contributions of this thesis in these two directions.

1.2.1 Fault tolerance techniques in coordinated drone missions

The deployment of multiple drones in order to perform a mission as a team can offer
increased benefits in several application domains, e.g., reduction of completion time
or improved quality of the end result. While a certain degree of self-organization
can be achieved using swarming techniques, these typically assume a large number
of homogeneous drones with relatively limited sensing and processing capabilities
and rely on quite extensive communication between the individual drones, which
are assumed to be in proximity with each other [151]. However, several real-world
applications can be efficiently supported by employing small teams consisting of a
few but more powerful drones that can navigate autonomously and may have dif-
ferent sensing/actuation capabilities. In our work, we consider the case where such
drones are coordinated by a distinguished computing entity, the mission controller,
which runs the mission program, collects information from all drones and issues
high-level control commands to them, through structured remote service interfaces.

This centralized approach offers many advantages in terms of programmability and
management of the available sensing/actuation resources. Also, individual drone
failures are not critical to the application progress as the mission controller can redis-
tribute the tasks of the failed drone to the remaining ones. However, in this system
model, the mission controller constitutes the single most important component for
the continuity of the mission. Thus, to make the system more dependable and avoid
manual/human intervention, it becomes crucial to tolerate failures of the mission
controller in a transparent way.

At first, we focus on tolerating fail-stop failures, where the controller simply stops
its operation. We define the properties that should be satisfied to ensure consistency
and highlight the issues that need to be addressed. For deterministic mission pro-
grams, we propose an active replication scheme, where the program is actively exe-
cuted by multiple instances of the mission controller, combined with logging of both
communication and system status information. While the fundamental principles of
active replication have been laid out a long time ago, this problem has been tradi-
tionally studied for the server/service side of computer systems [155]. In our case
however, the mission controller invokes the drones acting as their client, mandating
a different approach. We show that the introduced overhead occurs only in case of
drone failures and depends on the size of the logs that need to be exchanged be-
tween the mission controller replicas. We also expand the proposed solution to non-
deterministic applications through a semi-active replication approach, where non-
deterministic operations are executed by a distinguished mission controller replica
which checkpoints the locally produced execution state and transfers it to the other
replicas. In this case, the overhead is analogous to the size of the checkpoints.

Next, we address Byzantine failures, the most general type of failures, where the
mission controller may behave arbitrarily due to malicious attacks or hardware and
software errors. We specify the required properties and propose an active replica-
tion approach with an agreement protocol adapted to characteristics of this particu-
lar type of system. Our approach relies on synchronous communication with signed

Chapter 1. Introduction 4

messages and requires N = 2 x f 4 1 replicas to tolerate f failures. We informally
argue about the correctness of the proposed solution and show that the introduced
overhead comes mainly from the agreement protocol, which can be greatly reduced
by using a faster network for the communication between the replicas of the con-
troller (which is a realistic assumption). Also, while the cost for typical setups is
relatively high, at the range of tens of milliseconds, it is not prohibitive since the
mission controller is not involved in any tight control loops of the drones (these run
locally on each drone).

1.2.2 Managed operation, testing and integration of drone applications

To effectively operationalize drones in the context of next-generation applications,
it is important to shift from the currently established ad-hoc usage model to a more
structured and managed application development and deployment approach, prop-
erly integrated with the edge- and cloud-computing paradigms. To achieve this, we
envision drones as a proper infrastructure which can be used to support different
applications in a flexible and efficient way through a platform as a service (PaaS)
system that relieves the application developer/user from all the resource allocation,
deployment, connectivity and monitoring issues.

However, drones are special: they are mobile, rely on wireless communication, fea-
ture different sensors and resource-constrained embedded computing platforms,
and have limited operational autonomy (especially the widely used multicopters).
For these reasons, drones cannot be just plugged in a cloud or edge system as "sim-
ple" nodes. They must be handled in a special way, taking into account the strong ge-
ographic dimension of the corresponding applications, while dealing with the safety
and privacy issues and providing suitable testing and monitoring mechanisms.

At first, we present a holistic approach towards supporting a more reliable managed
operation of single-component drone applications through a software platform that
takes care of their automated deployment and controlled execution, coupled with
corresponding simulation and digital twin support for detecting bugs before de-
ployment and indicating possible malfunctions during operation in the real world,
respectively. We provide a high-level description of the concept and discuss the
most important aspects of a proof-of-concept implementation. Differently to other
efforts, the monitoring mechanisms do not focus only spatial-related restrictions
where drones are allowed to operate, but also concern the usage of their onboard
sensing and actuation equipment. We also demonstrate the provided functionality
through representative case studies using both the simulation environment where
we perform a variety of tests before deployment, and the digital twin setup where
a virtual representation of the drone runs in parallel with the application in the real
world, providing the ability to evaluate, verify and even predict the behavior of the
system.

In the following, we expand the concept to distributed, component-based applica-
tions that span over the entire system landscape, including drones, static edge nodes
and the cloud. We present an orchestration framework that enables the high-level
description of application requirements through suitable specifications that accom-
pany the component code and takes care of the automatic deployment and inter-
connection of the application components across the drone-edge-cloud continuum.
Internally, resource allocation and component deployment are mission-aware, based
on the geographic area where the application will use the drone, while connectivity

Chapter 1. Introduction 5

between application components is managed transparently, exploiting ad-hoc local
networking opportunities between drone and edge nodes hosting interacting com-
ponents. In addition, critical drone and edge functions, such as mobility and sensor
operations, are accessed by the application in a controlled way, through interfaces
that offer secure, safety- and privacy-preserving operations, driven by structured
policies. We demonstrate the provided functionality via both field tests and the sim-
ulation environment and through extensive performance evaluation we show that
our implementation has an acceptable resource footprint making it suitable even for
the constrained computing platforms found on drones and edge nodes.

1.3 Thesis Outline

The rest of the thesis is structured as follows.

In Chapter 2, we present the experimental tools, consisting of a complete simula-
tion environment and a drone testbed, that are used throughout this thesis for the
evaluation of the various mechanisms and algorithms we propose.

Chapters 3 through 6 constitute the first part of the thesis and deal with the fault tol-
erance techniques in multi-drone application scenarios. Chapter 3 presents the sys-
tem model for coordinated drone missions that we assume in our work and the ex-
tensions needed to support the active replication of the mission program. Chapter 4
discusses the active replication approach for tolerating fail-stop failures in both de-
terministic and non-deterministic mission programs. Chapter 5 describes the repli-
cation scheme with the assumptions and mechanisms for achieving Byzantine fault
tolerance. Chapter 6 gives an overview of related work regarding the toleration of
both fail-stop and Byzantine failures as well as indicative fault tolerance mechanisms
that are specific to robotic systems.

Chapters 7 through 9 comprise the second part of the thesis and focus on the man-
aged operation, testing and integration of drone applications. Chapter 7 discusses
our holistic approach for the managed operation of drone applications which con-
sists of the software platform that supports their automated deployment and con-
trolled execution, and the simulation and digital twin support. Chapter 8 presents
the framework for the orchestration of distributed applications in the drone-edge-
cloud continuum. Chapter 9 provides an overview of related work in the areas of
edge and drone-specific application deployment and testing and identifies our main
differentiation points.

Finally, Chapter 10 concludes the thesis summarizing our key contributions and
pointing out directions for future work.

Chapter 2

Experimental Tools

2.1 Introduction and Outline

In this chapter, we describe the main tools we have developed and use for the pro-
totype development and the experimental evaluation of the mechanisms we intro-
duce. Testing is an important part of the software development cycle. Especially,
in cyber-physical systems that involve autonomous vehicles like drones, which can
directly interact with and affect the environment, testing becomes an integral part of
the development process and has to be carried out systematically. To this end, we
use both a hardware-based testbed and an integrated simulation environment.

The hardware-based testbed consists of typical platforms of drones, embedded edge
nodes and controller computers. In the lab setup, it can be used for measuring the
various overheads in terms of computing resources required by the actual platforms
that would be used in a real experiment. In the field setup, it can be used for con-
ducting real-world experiments to gain valuable insight regarding the overall sys-
tem operation and functionality achieved under real conditions.

However, real-world experimentation with drones usually comes with significant
overhead and can be quite costly in terms of person hours. Also, in case of fail-
ures, drones are subject to severe damage that may require costly repairs. The issue
of safety makes things even harder because tests have to get formal approval from
civil authorities and extra care must be taken to ensure that drones will not run out
of control due to software bugs or a hardware malfunction. Considering the need
for extensive evaluation regarding both the applications and the system software,
we have developed a simulation environment that can assist during the early stages
of development by allowing the fast, controlled, secure, cheap and flexible experi-
mentation of complex scenarios and system configurations with multiple communi-
cating drones and/or edge nodes.

The rest of the chapter is organized as follows. Section 2.2 presents the basic com-
ponents of the hardware testbed setup. Section 2.3 briefly discusses the capabilities
and the design of the simulation setup. Finally, Section 2.4 concludes the chapter.

2.2 Hardware Testbed

Controller. All software related to the mission control and the drone management
is hosted in a typical server machine that effectively acts as a ground control sta-
tion (GCS) for the mission at hand. In most experiments we use a Dell Precision

Chapter 2. Experimental Tools 7

4G

dongle Pi camera
module
cuav
autopilot
RPi
(A) Drone
{ RPi
[Application Software]
Picamera
. Runtime/
(' : System-level Mechanisms @
[MAVProxy I [Picamera }/
A CUAV
autopilot

(B) Software/hardware organization

FIGURE 2.1: Drone setup used in the field and lab experiments

Tower 5810 server with Intel Xeon CPU E5-1620 v4 at 3.50GHz and 16GB RAM [35],
running a standard Linux distribution (Ubuntu 18.04).

Drone. The drone used in our experiments, shown in Figure 2.1a, is a custom-made
hexacopter with a CUAV V5 nano autopilot board [168] running the popular ArduPi-
lot autopilot software for multicopters (Copter v4.0) [7]. The drone has as a separate
companion board a Raspberry Pi 3 Model B [145] with a quad-core ARM Cortex A53
(ARMVS) processor at 1.2 GHz and 1GB of RAM, running the Debian-based Rasp-
berry Pi OS Buster, which is the officially supported Linux distribution for the RPi.
The RPi is connected to the autopilot board over serial and runs all the system-level
software we introduce as well as any application-level software, as shown in Fig-
ure 2.1b. For controlling the mobility of the drone, we employ a user-level library
communicating with the autopilot using MAVLink [112] messages, which, depend-
ing on the scenario, can be one of the low-level C and Python (pymavlink) MAVLink
libraries [136, 137], or a higher-level API like DroneKit [38], MAVSDK [115] and
ROS [149] through the MAVROS communication node [114]. The drone also features
an 8MP Raspberry Pi Camera Module 2 [144], which is accessed using the picamera
library [129]. From a communication viewpoint, apart from the RPi’s WiFi interface
that can be configured for wireless LAN communication in infrastructure or ad-hoc
mode, the drone is also equipped with a 4G/LTE USB modem [63] for interacting
over Internet.

Edge nodes. In experiments where edge nodes are required, we employ additional,

Chapter 2. Experimental Tools 8

standalone RPis that are equipped with the same camera module and have a con-
figuration similar with the one described for the drone’s companion computer, ex-
cept from the autopilot-related parts. In addition, depending on the testing sce-
nario, these nodes can also use the Ethernet interface for faster and more stable
communication/data transfers with other machines that play the role of additional
edge/cloud infrastructure.

Field setup. This setup is used to perform real-world experiments to test and verify
the functionality of our mechanisms in flight conditions. Typically, the drone is con-
figured to use the 4G/LTE modem in order to interact with the controller computer
over the Internet via a VPN connection. In cases where edge nodes are deployed,
these can connect to the VPN through their Ethernet interface. In addition, the edge
nodes can interact with the drone directly over WiFi.

Lab setup. This setup is mainly used to conduct a wide range of tests and perfor-
mance measurements in the lab, without having to fly the drone. To this end, on
the drone we disconnect the RPi from the autopilot board and configure MAVProxy
to use the official software-in-the-loop (SITL) configuration of ArduPilot [8] with its
integrated flight dynamics model, which we also run on the drone’s RPi, as shown
in Figure 2.1b. Apart from this, the drone setup is identical to the one used in the
field.

2.3 Simulation Environment

The simulation environment is based on the AeroLoop system [81]. AeroLoop was
conceived and developed by the Computer Systems Lab [30] of the Department of
Electrical and Computer Engineering of University of Thessaly, in the AeroLoop
project [1] that was funded through the open calls of the H2020 FIRE+ RAWFIE
project [146]. The AeroLoop system has been successfully integrated with the feder-
ated RAWFIE infrastructure as a virtual testbed for experimenting with drones and
other autonomous vehicles and has been used in other research projects, such as PV-
Auto-Scout [135] which focuses on the automated inspection of photovoltaic parks
via drones using IR-thermography, for evaluating the overall system functionality.

Next, Section 2.3.1 lists the supported functionality and Section 2.3.2 presents the
design of the simulation environment.

2.3.1 Provided functionality
The supported functionality can be summarized as follows:

¢ Flight simulation of virtual drones (v-drones). This is done using the same au-
topilot software as in the real drone, configured to run in conjunction with a
flight simulator in a SITL mode. The latter typically runs along the rest of the
drone-specific software in an isolated, virtualized environment (VM /container).

e Virtual snapshot camera sensor. Software running on the v-drones can use a
virtual camera device to capture photos during a mission. This is done through
a high-level API that can invoke either a system-wide virtual camera service
to retrieve aerial images based on the current position of the v-drone or sensor
services provided by the mission visualization environment.

Chapter 2. Experimental Tools 9

v-Camera Service

v-drone #1 v-drone #2

[[AR ey
, Images DB
Experiment Manager [Runtime/ Runtime/
Fo——— == v-GS System-level Mechanisms System-level Mechanisms

- Virtual
[Ndl.tP]th] [v-Camera} Calm:ra]
i SITL PfO)(y Server

EE (5

) Mission Controller &
Simulator Manager Drone Management SW

Wireless Channel A
Wireless Channel B

Management Channel

Camera Jl| | [node| |node| node |node |node |node .
ail: Ak sl ke Wk
ns-3 Wireless Channel Simulat Mission Viewer &
Monitoring
nnNs-3

MNetwork Simulator

&cazeso

Physics Simulator & 3D Graphics Viewer

FIGURE 2.2: Architecture overview of the simulation environment

¢ Simulated wireless communication. Communication between v-drones and
with other simulation entities, such as virtual ground stations (v-GS) or general-
purpose virtual edge nodes, can take place through multiple virtual wireless
channels simulating separate WiFi network domains or mimicking the behav-
ior of other network technologies, e.g., 4G. This is done through a network
simulator such as ns-3 [147] or by employing standard traffic control utilities
on top of a Linux environment.

* Experiment visualization. The user can monitor the experiment and have a
realistic view of the mission’s progress either in 3D or in 2D. This is done
through a graphics rendering engine provided by the flight simulator such
as Gazebo [77], or through external ground control station programs such as
Mission Planner [138].

* Programmatic experiment management. This is done through a structured
API that can be used to perform the basic management operations to configure
the required simulation entities, setup/tear down an experiment and retrieve
various status information.

2.3.2 System overview

The simulation environment combines a number of different simulation techniques
and takes advantage of mature virtualization technology in order to offer an inte-
grated setup that allows experimentation with virtual versions of the various system
entities, including the controller computer (v-GS) and the drones (v-drones) with
their onboard camera. For better modularity and flexibility, each of these simulation
entities can run in an isolated environment that can be either a Linux-based Virtual
Machine (VM) or a container on top of a corresponding hypervisor. Figure 2.2 de-
picts the overall design/architecture while the main entities are presented below.

The experiment manager provides the API for performing all management tasks.
The API is exposed through the zerorpc framework [128] and internally triggers

Chapter 2. Experimental Tools 10

interactions with the management agents that are included in all system entities (not
shown in Figure 2.2 for brevity). This system-internal data exchange is performed
via a dedicated management channel, which is implemented as an isolated bridge
network.

The virtual ground station (v-GS) is the equivalent of a ground control computer and
hosts the software related to the mission control and/or the drone management. De-
pending on the setup, it can communicate with the virtual drones through multiple
simulated wireless networks.

The Gazebo simulator [77] is an integral part of the simulation environment and
provides various functionalities, such as: (i) the description and configuration of
the drone robotic models in Simulation Description Format (SDF) [50], (ii) the high-
fidelity simulation of the drone’s flight dynamics via the ODE physics engine [161],
(iii) the production of sensor data for the drone’s inertia measurement unit (IMU)
as well as a visible light RGB camera, (iv) the three-dimensional visualization of the
simulation environment via the OGRE graphics rendering engine [164], and (v) a
ground plane with satellite imagery via the Static Map World plugin [131].

The virtual drone (v-drone) represents a simulated drone and hosts all applica-
tion and system-level software. The autopilot uses the software-in-the-loop (SITL)
ArduPilot simulation configuration [8], allowing to run exactly the same control
code as in real drones without requiring real hardware. In this configuration, the
autopilot during each control loop receives the data of the various flight sensors
from the flight dynamics model (FDM) provided by the Gazebo simulator and then
feeds backs the simulator with the commands it produces for controlling the motors.
The robotic model used for the drone is based on the 3DR Iris quadcopter, which is a
typical platform for a wide range of drone-based applications, while the interaction
with the autopilot takes place via the ArduPilot Gazebo plugin [73]. The camera is
accessed through the v-Camera Proxy that offers a pure Python interface, which is a
simplified version of the picamera library [129] of the Raspberry Pi application de-
velopment framework. Internally, depending on the specific scenario/configuration
the v-Camera Proxy may interact with the v-Camera Service or the RGB camera of
the Gazebo simulator.

The v-Camera Service simulates the functionality of a still snapshot camera, allow-
ing the application software to take vertical aerial photos that depending on the
experiment scenario can be either RGB or IR (thermal). Its implementation follows
a service-oriented approach and can be accessed by many different drones concur-
rently. Its main components are: (i) a collection of aerial images (Images DB) cov-
ering the entire area of interest and (ii) a server program (Virtual Camera Server)
that handles and serves requests. The images are stored as separate files in the local
file system and contain appropriate meta-information about the geographical coor-
dinates of the locations where they were received. The Virtual Camera Server at
startup creates an in-memory index that holds the coordinates (latitude / longitude
and altitude) for each such file, while during its operation, for each photo request it
returns the one whose center is closer to the drone’s 3D position. The camera control
by the v-drone is performed via the Python Remote Objects frameworks Pyro4 [139],
through the v-Camera Proxy which encapsulates in each such request the current po-
sition of the respective v-drone. More details about the virtual camera service can be
found in [82, 81].

Chapter 2. Experimental Tools 11

The alternative source of still images for the v-drone’s camera comes from the drone’s
robotic model in Gazebo, which includes a visible light (RGB) camera. This camera
retrieves the satellite imagery of its current field of view from the simulated ground
plane and publishes the flow of images on a specific ROS topic [149]. In this case,
at the v-drone side, the camera control is again performed through the v-Camera
Proxy which subscribes to the respective ROS topic to capture still images.

The ns-3 network simulator [147] implements the virtual WiFi networks used for the
communication between the v-drones and the v-GS. In particular, ns-3 creates a net-
work of communicating simulated nodes, called ghost nodes, and models the IEEE
802.11 communication protocol standard at the physical and MAC layers, includ-
ing the node mobility models. Each ghost node utilizes the ns-3 TapBridge device
which is connected to each v-drone through a combination of network bridges and
virtual network devices. The position of ghost nodes corresponding to drones is
updated periodically through information propagated by the management agents
of the respective v-drone entities. This interaction takes place on top of the man-
agement channel and follows a publish/subscribe scheme using the zeroMQ frame-
work [180]. This way, each v-drone can access multiple separate wireless channels
through different local network interfaces and the communication characteristics
over each one of them are adapted dynamically as a function of the drone’s mobility.

In addition, the simulation environment makes it possible to use additional tools
that are useful for better visualization and monitoring of the status of a mission,
especially in cases where multiple v-drones are involved. More specifically, ex-
ternal Ground Control Stations, such as Mission Planner [138] and QGroundCon-
trol [140], can be connected to the autopilots of the v-drones (in the same way this
is done for real drones) to provide more detail on flight operation and provide a
two-dimensional plane where all drones are shown simultaneously.

Depending on the experiment’s scenario and the resource requirements of the in-
volved entities, the simulation environment runs either on a typical server or on
the cloud computing infrastructure of the ECE Department. In the former case, the
simulation environment is installed natively in a Dell Precision Tower 5810 server
equipped with an Intel Xeon CPU E5-1620 v4 at 3.50GHz and 16GB RAM [35], run-
ning a standard Linux distribution (Ubuntu 18.04). In the latter case, the entire sim-
ulation environment is encapsulated in a VM with 125 GB of RAM and 24 cores,
deployed on top of the ESXi hypervisor that runs on a ProLiant BL460c Gen8 host
equipped with 2 Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz and 256GB RAM.

2.4 Conclusion

In this chapter, we presented the experimental tools we use throughout this thesis
for the evaluation of the mechanisms we design and develop. On the one hand,
we have setup a hardware testbed that consists of typical platforms used in drone-
based applications and can be configured for both lab and field experiments in a
flexible way. On the other hand, we have developed a unified and modular simula-
tion environment that combines mature simulation technologies for flight, sensing
and networking to support easy and safe experimentation with virtual drones. The
extensibility of the simulation environment is further demonstrated in Chapter 7,
Section 7.4, where we discuss how it is used to introduce digital twin support in the
context of a framework for managed drone applications.

Part1

Fault Tolerance Techniques in
Coordinated Drone Missions

12

13

Chapter 3

System Model for Coordinated
Drone Missions

In this chapter, at first, we describe in detail the system model we use for coordinated
multi-drone missions and then we introduce the main extensions that enable our
fault tolerance mechanisms. The system model assumptions that are specific to each
one of the proposed mechanisms are presented at the respective chapters.

3.1 Basic model

Drones

Mission Controller

()

__(system
2|

—& layer
mission
program

c@:: mobility

remote
invocation

G
i

=,
©] camera

ﬁ spray

system |
layer

FIGURE 3.1: System model for coordinated drone missions

Figure 3.1 presents the system model for coordinated drone missions. We model
drones as powerful sensor/actuator nodes with movement capability. We assume
that each node comes with substantial navigation and obstacle-avoidance capability
and executes all critical control loops locally using an autopilot that runs on an em-
bedded real-time platform. The high-level coordination of the mission is performed
by a distinguished entity, the mission controller. The mission controller runs the mis-
sion program, an application that collects state information from the nodes, processes
and analyzes this information, takes high-level coordination decisions, and issues
corresponding commands to the nodes according to the mission objectives. Thus,
the mission controller effectively acts as the master that takes all high-level coor-
dination decisions, while the nodes act as slaves that follow the commands of the
master. Nodes do not need to communicate with each other for this purpose.

Chapter 3. System Model for Coordinated Drone Missions 14

Mission Controller Node (Drone) Node (Drone)

Services Services

Mission Program

service
call
Mission Control
Runtime

Node Runtime Node Runtime

request reply

Transport & Failure Transport & Failure Transport & Failure
Detection Detection Detection

m w® w

FIGURE 3.2: Information flow between the mission controller and the
nodes (drones)

In the spirit of service-oriented computing [42], the sensing, actuation and mobil-
ity /navigation capabilities of the nodes are exposed in a structured way, through
corresponding services with well-defined remote interfaces. These interfaces consist
of function calls that can be used to retrieve state information from the drone as
well as to issue commands prompting it to perform some action that may concern a
movement or an onboard actuator.

Figure 3.2 illustrates the information flow between the main system entities. The
interaction between the mission program and the node services is implemented in
a transparent way, through suitable runtime support. Among other things, the run-
time is responsible for implementing the remote service invocation in the spirit of
remote procedure calls (RPCs) [122]. Each service call translates to a correspond-
ing request that is sent to the target node. In turn, the node processes the request
and sends back the reply. This can be supported using suitable RPC support or be
implemented directly on top of a reliable transport service, such as TCP/IP.

The nature of the operation that is requested via a service call can be synchronous
or asynchronous. Synchronous operations are performed immediately, and the out-
come is encoded in the return value of the call. Asynchronous operations typically
take a longer time to be performed. In this case, the return value merely acknowl-
edges the fact that the node will try to perform the requested operation (which may
be completed with some delay). The progress of asynchronous operations can be
monitored by issuing service calls that return the desired state information. A typi-
cal example is to perform a call that instructs the node to go to a certain location and
then periodically retrieve the node’s current location via a different call to monitor
movement progress. Unlike asynchronous procedure calls, in our case, the remote
service calls are always synchronous and block the caller (i.e., mission program) un-
til the reply is returned, irrespective of whether the operation they trigger in the
node is synchronous or asynchronous.

For node failures, we assume the fail-stop model: a node either functions properly or
stops. This is according to standard practice for embedded systems, which internally
employ redundancy and/or secure state estimation techniques [54] [44] so that they
are at least able to detect software/hardware failures of sensors/actuators as well as
adversarial attacks on them. Moreover, in the case of autonomous vehicles, severe
malfunctions almost inevitably lead to actual crashes [162].

Chapter 3. System Model for Coordinated Drone Missions 15

replica domain .
P replica-node

s | domain A
/ Missim__ . ; \

Controller N
/ 3 L~ Node
I; ' Replica A L ’r\
{ /,, I".
! ey
|' ¥ '|
| ¥ Node
| |
1 |
1)
/ : ."

Mission Node |
Controller \ '
Repllca B / — .

replica-node |
domain B

FIGURE 3.3: Organization of the communication for the active repli-
cation of the mission controller

We assume that remote service invocations have at-most-once semantics [105] and
that node failures are detected at the transport/RPC layer. If a service call returns
normally, then the mission program knows that the node has processed the request
exactly once. Else, if the call returns with an error indicating a node failure, the
mission program does not know whether the node managed to handle the request,
but it is certain that the node did not execute the call more than once. This is par-
ticularly important for calls that lead to critical actuation operations, which may be
non-idempotent [31].

The mission controller may also fail during mission execution. From a traditional
RPC perspective, this corresponds to a client failure, which is typically dealt with
by garbage-collecting orphan calls at the server, using a suitable mechanism such as
extermination or reincarnation [122]. In our case, when a node detects a failure of
the mission controller, it enters a fail-safe state in which it remains until a human
operator takes over control manually.

In the presented system model, node failures and failed service invocations are not
fatal, as it may be possible to proceed with the mission by employing additional
nodes and/or redistributing the tasks that need to be performed among the remain-
ing nodes. However, the mission controller constitutes a single point of failure for
the execution of the mission.

3.2 Extended model

To tolerate failures of the mission controller in a transparent way, we extend the basic
system model and propose an active replication approach where the (same) mission
program is actively executed by multiple instances of the mission controller. We
refer to each instance of the mission controller as a replica. Figure 3.3 shows the
organization of the communication that takes place between the mission controller
replicas and the nodes, as this is assumed in our approach.

Each replica interacts with the nodes within a separate/private communication do-
main. We refer to this as a replica-node domain. From a network layer perspective,
replica-node domains can be implemented as VPN over the Internet, or via dedi-
cated wireless telecommunication links. To avoid crosstalk between the domains

Chapter 3. System Model for Coordinated Drone Missions 16

and to increase reliability against jamming attacks, each domain could use a different
radio frequency, possibly even a different radio technology for increased reliability.

Replicas interact with each other using a separate communication domain, the replica
domain. Unlike the replica-node domains, the replica domain could be implemented
using tethered-only networking technology (if the replicas are stationary).

Note that active replication is traditionally used in computer systems for servers/
services that provide critical functionality [155]. In contrast, in our case the most
critical system component is the mission controller, which according to the client-
server model semantics acts as a client by invoking the services provided by the
nodes.

Both fault tolerance mechanisms we propose in this thesis, presented in Chapters 4
and 5, assume this extended system model. Thus, in the respective sections we focus
on the assumptions that are specific to each approach.

17

Chapter 4

Tolerance of Fail-Stop Failures
Using Active Replication

4.1 Contributions and Outline

In this chapter, we investigate how to support the active replication of the mission
controller in centrally coordinated drone missions to tolerate fail-stop failures, while
addressing all the related correctness/consistency issues. We consider such a re-
search direction as an important step towards making this kind of systems more
dependable, which would benefit a wide range of applications by increasing their
robustness and achieving a truly autonomic operation.

Our main contributions are the following:

¢ We present an approach for supporting the active replication of the mission
controller in coordinated teams of autonomous vehicles like drones.

¢ We define the properties that should be satisfied to ensure consistency and
highlight the issues that need to be addressed.

¢ We present, in detail, a system-level mechanism that tackles the problem for
deterministic mission programs, and briefly discuss how to deal with non-
deterministic mission programs.

* We capture the overheads of a concrete implementation of the proposed solu-
tion, analytically as well as experimentally.

The rest of the chapter is organized as follows. Section 4.2 lists the key assump-
tions of the system model we use as a baseline for our work. Section 4.3 defines the
desired consistency properties, identifies the issues that arise when employing an
active replication approach for the mission controller and presents solutions for de-
terministic and non-deterministic mission programs. Section 4.4 discusses a concrete
implementation of the proposed solutions for a programming environment that sup-
ports multi-drone applications. Finally, Section 4.5 gives an analytical cost model for
the communication overhead of the proposed approach and presents the results of
indicative tests that have been performed using our prototype implementation on
top of a suitable simulation environment.

4.2 System Model

In our system model, drones are modeled as nodes that expose the available sens-
ing, actuation and mobility resources in the form of services that are being invoked

Chapter 4. Tolerance of Fail-Stop Failures Using Active Replication 18

remotely by a mission program that describes the high-level mission objectives. The
same mission program is actively executed by multiple mission controller replicas, and
each replica invokes the nodes inside a separate replica-node communication domain.
Replicas communicate through the replica domain, whereas nodes do not need to in-
teract with each other for the purposes of the mission execution. For more details,
refer to Chapter 3.

The key assumptions are summarized as follows:
* Remote node service invocations have at-most-once semantics [105].
* Node failures follow the fail-stop model, i.e., a failed node stops operating.
¢ Node failures are detected by the replicas at the system’s transport/RPC layer.
¢ Mission controller replicas can experience fail-stop failures.

¢ Replicas interact using reliable group communication, such as reliable multi-
cast [26].

* Replicas’ communication comes with a reliable failure detection mechanism.

* Mission programs can be either deterministic or may include non-deterministic
operations.

The fact that the replicas reliable group communication provides failure detection
functionality ensures that if a replica fails then the failure will be announced to all
other working replicas after the last message that was sent by the failed replica is de-
livered. The fault tolerance mechanism we propose in the sequel works with simple
FIFO delivery, without requiring more advanced/costly causal or total ordering [99].

4.3 Fault Tolerance Mechanisms

In this section, we present the properties that summarize the desired functionality
and next we present a mechanism that ensures them for deterministic mission pro-
gram executions. We start by considering executions without node failures and then
discuss the extensions needed to deal with node failures. Finally, we briefly discuss
how to support the execution of non-deterministic mission programs.

4.3.1 Replication properties

In the traditional active replication scheme, several properties have been defined to
capture the consistency requirements for a deterministic replicated service [34]. In
our case, where the replicated entity is the mission controller, we capture the desired
consistency and functionality via two properties:

¢ Uniform Request Agreement. All working replicas issue the same requests in
the same order.

¢ Uniform Reply Integrity. All replicas that issue the same request, will receive
the same reply.

Figure 4.1 gives an overview of the entities, the mechanisms that we introduce and
the interactions that take place in our system model. For mission applications with
a deterministic execution flow, Uniform Request Agreement is ensured by default. For

Chapter 4. Tolerance of Fail-Stop Failures Using Active Replication 19

* local service invocation
<= replica domain Nodes (Drones)
<« -+ replica-node domain A
« = replica-node domain B

Mission Controller Replica A

- o
= layer |y~~_; i
mission —=—= i - il
rogram i'l % Tz o o2
¥ 2 iy
- - % ’
synchronization Pt
on node failure) | i
//_,.- P —— i - N
{ A3 remote
{ = | =~ _ invocation
f -

. mission

.

\ I, ',-"' e y

\program h P SR
. o gy

e 1 system | £F
Q £ servic

Mission Controller Replica B

L0G

FIGURE 4.1: Overview of the system entities, their interactions and
the introduced mechanisms

non-deterministic execution, appropriate replica coordination is needed, as we dis-
cuss in subsection 4.3.8. In the absence of node failures, Uniform Reply Integrity can
be ensured by uniquely identifying the requests and keeping track of the executed
requests as we show in subsection 4.3.3. However, if a node fails then the situa-
tion becomes more complicated, and synchronization is required. We discuss and
address this issue in subsection 4.3.4.

4.3.2 Fault-free operation

Assuming deterministic mission program execution, the replicas of the mission con-
troller can execute the mission program in parallel to each other, without any syn-
chronization (as long as there are no node failures, which are discussed in the se-
quel). This has the advantage of reduced communication overhead and faster mis-
sion progress. Due to this decoupled parallel execution, the execution of the mission
program at some replicas may lag behind other replicas. We refer to a replica as fast
if it issues a service call that has not yet been issued by another replica. A replica is
called slow if it issues a call that has already been issued by some replica(s).

Let replica r; keep a sequence number seq; that is increased each time it performs
a service call to a node. Replica ryis fast if seq = seqy, Vk, whereas r; is slow if
Jk | seqs < seqk. In the same vein, rsis the slowest if seqs < seqy, Vk. Of course, all
replicas might issue requests at the same speed, in which case they are all equally
fast/slow.

4.3.3 Duplicate requests handling

Since the mission is deterministic, a node receives the same service request multiple
times, once from each replica. However, each service call should be executed at most
once.

Chapter 4. Tolerance of Fail-Stop Failures Using Active Replication 20

To deal with such duplicate service calls, each node keeps a log of the requests re-
ceived and the replies that were produced in return. Let log[pos].seq and log[pos].req
be the sequence number and respectively a hash of the request at position pos in the
log and let log[pos].rpl be the corresponding reply. Also, let posy be the log position
for the last request of r¢. Finally, let pos_last be the position of the last log entry,
which corresponds to the last new (not duplicate) request received.

Algorithm 1 shows how a node handles a service call request coming from a replica
of the mission controller, while Algorithm 2 shows how a replica handles the reply
that is sent from a node in response to a previously issued request.

When a node receives the next request reqy from ry, it checks whether pos; = pos_last.
If so, this is a new request, thus the respective service call is executed, the log pointer
of ¢ is incremented pos; = posy 4 1 and the request is appended to the log together
with the reply that is sent back. If pos; < pos_last, the request of r; has already been
issued by another replica and it is checked whether it is identical to the one stored
in the next position of the log, req;, = log[posk + 1].req. If so, the log pointer is incre-
mented, posy = posi + 1 and the corresponding reply log[posi|.rpl is retrieved from
the log and is sent to the replica. Else, the node sends a reply indicating that this is
an unexpected request, so that the mission controller can act accordingly, e.g., notify
the mission program via a corresponding runtime exception. This can only occur in
an exceptional scenario, discussed in Section 4.3.5.

Algorithm 1 Handling incoming service calls at the node

1: log +— @ > request/reply log
2: pos_last <— 0 > last log position
3: seq_min < 0 > smallest sequence number over all replicas
4: for each replica r; do
5: posy <0 > position of last request of 7y
6: end for
7. upon receiving (REQUEST, seqy, reqx) from ry do
8: if posy = pos_last then > new request
9: rpl < execute (reqy)

10: posy < posy + 1

11: pos_last < posy

12: append(log, (seqy, reqx, rpli))

13: seq_min <— min(log[posk].seq|Vk)

14: send (REPLY, seqy, rply, seq_min) to ry

15: else if pos; < pos_last then > old request

16: if reqy = log[posy + 1].req then

17: posy < posy +1

18: seq_min <— min(log|posk].seq|Vk)

19: send (REPLY, seqy, log[posk].rpl, seq_min) to ry

20: else > mismatch with logged request

21: send (UNEXPECTED_REQ, seqy) to r

22: end if

23: end if

24: end

Chapter 4. Tolerance of Fail-Stop Failures Using Active Replication 21

Algorithm 2 Handling node replies at the replica

1: log + @

2: seq_slow < 0 > sequence number of slowest replica(s)
3: upon receiving (REPLY, seq, rpl,seq_min) from n; do

4: append (log, (seq,n;,rpl))

5: seq_slow <— max(seq_slow, seq_min)

6: return rpl

7: end

8: upon receiving (UNEXPECTED_REQ, seq) from n; do

9: return UnexpectedReqError > notify problematic situation

10: end

4.3.4 Node failures

When a node fails, it is no longer guaranteed that all replicas will continue their exe-
cution in the same way, even if the mission program is deterministic. This is because
some slow replicas will not be able to receive any replies from the failed node, and
thus will notify the mission program about the node failure at an earlier point of
execution compared to a faster replica. As a result, the mission program may take a
different execution path than the one that was followed by the fast replica(s), which
may have successfully invoked the node before it failed. To address the problem,
replicas have to synchronize to ensure that they will all continue the execution of
the mission program in the same way. Note that the node failure may be discovered
by any replica irrespectively of it being fast or slow.

To support the required synchronization, every replica r; also maintains a log with
entries for the service calls it has performed to the nodes. Let log[pos].seq, log[pos]|.n
and log[pos].rpl denote the call sequence number, the target node and the reply that
was received from the node, respectively. Also, every node 7; records the current call
sequence number of each replica and updates the minimum value, which is included
in the replies sent to the replicas (see Algorithm 1, lines 13-14 and 18-19). Based on
this information, in turn, each replica r; maintains a conservative lower bound for
the call sequence number of the slowest among all replica(s), let this be seq_slow (see
Algorithm 2).

When replica i detects that node ¢ has failed, it stops the execution of the mission
program and enters a special synchronization state. After recording the failure, it
sends to all replicas, via reliable multicast, a synchronization message that includes
ny and seq. The message also includes the log entries for all the calls 7y has issued to
ny that may have not yet been performed by some slower replica(s), i.e., all entries
where log[pos|.n = ng A seq_slow < log[pos].seq < seqy.

When a replica receives a synchronization message for node 7 for which it has not
yet detected the failure, it acts as if it had just detected the failure of 75 (as discussed
above). Also, for every synchronization message received, replicas add to their log
any missing entries for the failed node 1, update the sequence number of the last
call that was issued by any replica to s, let this be seq_last[f], and update the se-
quence number of the slowest replica seq_slow.

Chapter 4. Tolerance of Fail-Stop Failures Using Active Replication 22

The size of the synchronization messages exchanged between the replicas can be
reduced using a simple optimization. Namely, if a replica learns about a node failure
from another replica ry, it suffices to include in its own synchronization message only
the log entries for the failed node that are not already found in the message of ry
(which will be received by all replicas, thanks to the reliable multicast functionality).

Algorithm 3 Replica synchronization for a node failure

1: state < normal
2: for each node n; do

3. failed[i] < false > own failure detection flag for n;
4: syncli] < 0 > nof sync messages received for the failure of n;
5: seq_last[i] < 0 > sequence number of last call to 7; in the log
6: end for
7: upon detecting failure of node ¢ do
8. if failed[f] = false then
9: state <— sync

10: failed[f] < true

11: seq_last[f] < getLastReqSeqno(log, n¢)

12: logs < getLogEntries(log, n¢,seq_slow, seq)

13: send (SYNC, ny,seq,log) via RM

14: if (failed[i] = false) V (syncli] = nofReplicas()), Vn; then

15: state <— normal

16 end if

17: end if

18: end

19: upon receiving (SYNC, ny, seqy, logk) from ry do
20: sync[f] < sync[f] +1

21: seq_slow = min(seq_slow, seqy)

22: if seq < seq then

23: appendLogEntries(log, logy, seq, seqy)

24: seq_last[f] < getLastReqSeqno(log, n¢)
25: end if

26: if failed[f] = false then

27: state <— sync

28: failed[f] < true

29: seq_last[f] < getLastReqSeqno(log, n¢)
30: if seq > seq then

31: logs < getLogEntries(log, n¢, seqy, seq)
32: else

33: logr <~ @

34: end if

35: send (SYNC, ny, seq,logf> via RM

36: end if

37. if (failed[i] = false) V (sync|i] = nofReplicas()), Vn; then
38: state <— normal

39: end if

40: end

Chapter 4. Tolerance of Fail-Stop Failures Using Active Replication 23

activate log replay
for failed nodes
I

issue call normally J

next call to a
failed node?

completed logged
eplies for that node?,

service call from
received logs

[indicate node fai[ure]

any nodes in log
replay?

stop log replay

FIGURE 4.2: Flowchart of extended service call process

Note that it is straightforward to handle the case where different replicas concur-
rently discover the failure of different nodes. In this case, all replicas remain in the
synchronization state and repeat the process for the additional failed node(s) before
resuming the mission program. Replica r; remains in the synchronization state until
it receives a synchronization message from every other replica. Then, it reverts to
the normal state and resumes the execution of the mission program.

Algorithm 3 shows the synchronization between replicas when a node failure is de-
tected. This includes the optimization that avoids sending superfluous log entries
when a replica learns about a node failure as a side-effect of receiving the synchro-
nization message of a faster or equally fast replica. It also handles the case where
different node failures are detected simultaneously, in which case, multiple synchro-
nization rounds are performed in parallel, one round for each node.

Finally, an extended service call process is activated as illustrated in Figure 4.2.
When the mission program issues a service call, before sending a request to the tar-
get node n;, the replica checks whether it has recorded a failure of n;. If not, the
node is invoked as usual. Else, it is checked whether the log contains the reply for
this request (seq < seq_last[i]), in which case the reply log[pos].rpl|log|pos].seq = seq
is fetched from the log and is returned to the mission program. If the log does not
contain the reply, an error is returned to the mission program, indicating that n; has
failed (the call sequence number is not incremented in this case). Algorithm 4 gives
a high-level description of this process.

Chapter 4. Tolerance of Fail-Stop Failures Using Active Replication 24

Algorithm 4 Extended service call process at the replica

1: when invoking n; with request req do

seq <— seq +1

if failed[i] = false then > issue request as usual
send (REQUEST, seq, req) to n;

else if seq < seq_last[i] then > get reply from the log
return getLogReply(log, seq)

else
seq < seq — 1
return NodeFailureError > indicate node failure

10: end if

11: end

4.3.5 Replica failures

When a node detects the failure of a replica ry, it simply removes r¢ from the set
of replicas from which it expects to receive requests. It may also garbage collect all
internal data structures concerning r¢. Nodes will enter the fail-safe state only when
all replicas of the mission controller fail.

When a replica detects the failure of another replica 7, it removes 7, from the set
of working replicas in order for this replica to be excluded from subsequent com-
munication/synchronization rounds. Note that if a replica fails during a synchro-
nization round, thanks to the reliable multicast functionality, its message will either
be received by all working replicas or by none of them, so this will not affect the
outcome.

However, there is a corner case where the failure of a replica will cause a problem,
namely if node 7y fails and there is a single fast replica r¢, which is the only one
that has performed the most recent service call(s) to 1y, and 7y fails too, before it
manages to send its own synchronization message with the missing log entries for
ng. In this case, the remaining replicas cannot recover these entries and there is no
safe way for them to deduce that this is a problematic situation. Thus, they continue
with the execution of the mission program as usual. However, this may lead to a
different execution path from the one followed by the fast replica r¢. This situation
is detected when a replica receives a reply indicating that its request is unexpected
(see Section 4.3.3, Algorithm 1 line 20 and Algorithm 2 line 9). Then, the mission pro-
gram is notified in order to handle the problem (e.g., set the nodes in fail-safe mode
and retrieve information from them to assess the current situation). If the prospect
of such a discontinuity is not acceptable, one has to adopt the more conservative
approach for supporting non-deterministic execution, discussed in Section 4.3.8.

4.3.6 Garbage collection of log entries

The logs of the nodes and the replicas cannot grow indefinitely. Fortunately, both
logs can be garbage-collected in a straightforward way, without any additional com-
munication.

Nodes can remove a log entry once a corresponding service call request is received
from every working replica. More specifically, all entries with log[pos]|.seq < seq_min
can be safely removed from the log. This way, the log of a node only contains entries
for the service calls that have not yet been performed by the slowest replicas.

Chapter 4. Tolerance of Fail-Stop Failures Using Active Replication 25

0

|
I
| 0
log | log |
. I
I
|

pos, = pos, = pos_last

|
|
|
|
|
|
REQUEST(seq: 1, req: req;) I
i pos, == pos_last
| rply= exec(req,)
| 4 :
o i o [Toer] [mms)
" Tkl | REPLY(seq; 1, rpl: rpl,, seq_min: 0) pos;
p= T Pttt |
og[maw |
o | | |
I ; | |
seq = | REQUEST(seq: 1, req;: re
| pos, < pos_last
|
| 0 1
| log | <1, reqy, rply> ‘ I seq_min = 1]
|
|
| § 7 Lgervseq 1wy seaminy | | ol ogioosiie
' w1 | |
| log | |

FIGURE 4.3: Invocation of the same node service by two replicas

Along the same lines, a replica can truncate its log up to the entry where log[pos|.seq =
seq_slow, which represents a conservative lower bound for the last call that has been
performed by the slower replicas. Recall that seq_slow is calculated independently
by each replica, based on the information that nodes append to their replies. Also
note that during the synchronization phase, all replicas can update seq_slow to ac-
curately reflect the smallest call sequence number among all replicas, and thus can
safely truncate their log accordingly.

4.3.7 Indicative operation sequence diagrams

To provide a better overview of our approach, we present the operation of our mech-
anisms for two scenarios regarding the two most basic operations, namely the ser-
vice invocation and the handling of node failures.

Figure 4.3 illustrates how a service invocation is handled at the node and at the
replicas. It shows two replicas, r; and r7, sending the same request to node n;. The
green color indicates changes in the state of the respective entity. When the request
from rq is received, since it is a new request, the service call is executed and inserted
in the node’s log. On the other hand, as the request from r; is identified as a duplicate
it is served from the log. At the replicas’ side, the received replies are also logged.
Note that 117 keeps the smallest sequence number of the requests received from all
the replicas (seq_min) and this information is also included in the replies it returns.
In turn, this can be used by both replicas and the node to truncate their logs when
needed. For instance, in the particular scenario assuming that there are no other
replicas r; and 17 can garbage collect their logs.

Figure 4.4 presents the interactions that take place during a node failure. As above,
the green color indicates changes in the state. Also, the numbers inside the log en-
tries indicate the sequence number of the respective requests. When replica ry de-
tects the failure of 1y, it enters the synchronization state and sends to r, a SYNC
message via reliable multicast to inform it for the failure event. The message also

Chapter 4. Tolerance of Fail-Stop Failures Using Active Replication 26

seq=8 | seq =5 |
seq_slow = 5 | seq_slow = 5 |
state = normal | state = normal |
| |
oo[s]e] F] | N
|
L

seq =8
seq_slow = 5

> node n, failed

og|slef7]e]

SYNC(failed: n,, seq: 8, log: logs)

seq =5
seq_slow = 5
state = sync
failed = n,

seq_last = 8

gl s o] 7]e]

SYNC(failed: n,, seq: 5, log: @
| |

FIGURE 4.4: Replicas synchronization on node failure

carries the logged replies from n; corresponding to requests that may have not been
yet performed by the slower replicas (from request sequence number 6 to 8). Replica
1o enters the synchronization state upon receiving the message, appends its log with
any missing entries and since it is slower than r sends the SYNC message without
including any log entries. Once, the replicas have received synchronization mes-
sages from all other replicas they resume the mission program execution. Note that
replica r, will announce the node failure to the mission program once it has com-
pleted servicing its requests to n; from the logged replies.

4.3.8 Non-deterministic execution

The above approach will only work if the mission program is deterministic. But
requiring the mission logic to be deterministic can be restrictive. Moreover, as dis-
cussed above, there is a corner case that may lead to mission discontinuation.

Non-deterministic execution can be supported by adopting a semi-active replica-
tion approach [176]. Adapted to our context, this works as follows. When a non-
deterministic operation is encountered in the mission program, the replicas pause
their execution in a barrier-like manner. Then, a distinguished replica, the leader, ex-
ecutes the non-deterministic part of the mission program and when done transfers
the local execution state to the follower replicas (again, this can be done using simple
reliable FIFO multicast). The followers, in turn, update their state and resume the
execution of the mission after the endpoint of the non-deterministic execution.

If the leader fails, a new one is elected. Given that any replica can assume this role,
the election can be done based on trivial information that is already available locally
at each replica. For example, the role of the leader can be assigned to the replica with
the largest identifier.

The nodes keep the same log structure as discussed above to avoid executing dupli-
cate service calls during the execution of deterministic sections. In addition, the re-
quests issued by the leader during a non-deterministic section are flagged so that the
next request of a follower replica, when it resumes execution after a non-deterministic

Chapter 4. Tolerance of Fail-Stop Failures Using Active Replication 27

section, will not be detected as unexpected (there will be a gap in the sequence num-
bers of the previous and the next request of the replica, before and respectively after
the non-deterministic section). Note that if the leader fails while executing a non-
deterministic section, the new leader that takes over will perform the last service
call that may have already been performed by the previous leader before it failed.
Such duplicates can be detected and handled by the node as usual.

As will be shown in Section 4.5, this mode of operation comes at a significant cost.
Therefore, it is important for missions to be designed so that they have few, well-
defined non-deterministic sections. The worst case is for the entire mission program
to be non-deterministic, in which case the synchronization between the leader and
the followers has to be performed at every service call towards a node.

4.4 Implementation

We have implemented the proposed replication approach in a suitably extended ver-
sion of the TeCoLa programming framework [85]. TeCoLa is a Python-based mid-
dleware, designed to facilitate the high-level coordination of dynamic and heteroge-
neous robotic teams. Its design follows the system model discussed in Section 4.2.

For the interaction between the mission controller and the nodes we employ GCBRR,
areliable 1-N request-reply transport with group management capabilities [83]. GCBRR
is designed for channels with physical multicast capability and supports 1-to-N
request-reply exchanges with the minimum number of message transmissions, at
low latency and without any contention among the communicating parties. Each
service call performed by the mission programs is mapped, behind the scenes, to a
corresponding request-reply interaction.

The replicas of the mission controller are specified in a configuration file, which
is available at all replicas and nodes. This way, all replicas know each other, and
nodes know from which replicas to expect service calls, without requiring some dis-
covery infrastructure/protocol. The current implementation does not support the
dynamic addition of replicas at runtime. Reliable multicast communication between
the replicas of the mission controller is implemented using the JGroups toolkit [66].
We configure JGroups to use UDP/IP as transport in order to exploit IP multicast-
ing, to combine FD and FD_SOCK options to achieve solid failure detection among
the replicas and to employ the NAKACK2 protocol for the reliable FIFO delivery of
multicast messages using negative acks.

To support non-deterministic mission programs, a replica must be able to save and
restore the state of the mission program. In our implementation, this is done using
the DMTCP framework [6]. To accelerate prototyping, we save the entire state of the
process that runs the mission program in a brute-force way, without attempting a
more elaborate integration with the TeCoLa environment (which might allow a more
selective recording of the absolutely crucial state information). To reduce the size of
the images, we perform incremental checkpointing using the HBICT module [60],
which works seamlessly with DMTCP.

Chapter 4. Tolerance of Fail-Stop Failures Using Active Replication 28

4.5 Evaluation

In this section we discuss the communication overhead of the proposed active repli-
cation approach. On the one hand, we give analytical estimations for the main com-
ponents of the mechanisms. On the other hand, we record the overhead of the cur-
rent implementation in TeCoLa and compare them with the analytical estimates.
Our analysis assumes that a node handles incoming requests in a serialized /FIFO
manner, thus, the handling of the next request starts after the handling of the previ-
ous request is completed (as done in the implementation). Also, we assume that the
replica-node domains are isolated and do not crosstalk/interfere with each other.

4.5.1 Experimental setup

The experimental measurements are performed using the simulation environment
we have developed and presented in chapter 2, section 2.3, which allows us to test
mission software by running experiments with several virtual unmanned aerial ve-
hicles (v-drones) that can be controlled from a virtual ground station (v-GS). In this
case, the v-drones and the v-GS run the TeCoLa software stack.

We introduce multiple v-GS, each running a replica of the TeCoLa mission con-
troller. The replica-node domains are implemented as separate wireless WiFi net-
works, with the simulation support of ns-3. The WiFi rate is set at the basic rate for
multicasts, 1 Mbps. The replica domain is implemented as a wired Ethernet network
with a rate of 210 Mbps.

The mission program that runs on top of TeCoLa, performs a series of dummy ser-
vice calls. We set the requests and replies either so that their payload fully occupies
the maximum packet payload, or so that their payload is empty, in which case the
respective packets only carry the basic protocol headers. We can also set the amount
of processing that is performed by the node for each such call. In our experiments,
we vary the number of replicas used for the mission controller. Note that the over-
head of the proposed replication scheme does not depend on the number of nodes
employed in the mission.

4.5.2 Service call delay in deterministic execution

First, we investigate the end-to-end delay of a service call for deterministic execution
scenarios, for the typical case where the target node is alive. This can be expressed
as Teap = Tt + Tproc- The round-trip time Ty is the time it takes to send the request
and receive the reply over the communication channel of the node-replica domain.
For a fast replica, Ty, equals the time needed by the node to process the request.
For a slow replica, Ty, = 0 if the node is idle, as the reply is directly fetched from
the log. If, however, the node is busy processing a request of a fast replica, in the
worst case, Ty Will be equal to the respective processing delay.

In a first set of experiments, we measure T, for the case where there are no node
failures. We use three different service calls, which perform a brute-force primality
test, with a processing time T, of 1, 2 and 3 seconds, respectively. Each request
and reply carry the maximum packet payload for WiFi, 1500 bytes, yielding a T
of 26 milliseconds at the WiFi channel rate of 1 Mbps. We employ two replicas of
the mission controller (A and B), running a mission program that performs these
service calls, one after the other. We experiment with three execution scenarios. In
the parallel execution, both replicas perform the same call practically at the same

Chapter 4. Tolerance of Fail-Stop Failures Using Active Replication 29

BN T ReplicaA EEE Ty

BN T ReplicaB = Analytical estimates

4.
)
= Call 3 call 3 call 1 Call 3
T 3 o e | | » e |
o
T .
U Call 2 Call 2 | Call2
o 2 AR i e
= :
c
2 Call 1] Call 1 _

1 5 e & o

|
05 Parallel Sequential - Interweaved

Execution scenarios

FIGURE 4.5: Service call delay in the absence of node failures

time. In the sequential execution, replica A performs the first service call and once
it returns, then replica B proceeds to perform the same call. Replica A performs
the next service call right after the completion of the previous call at replica B. In the
interweaved execution, replica A is two calls ahead of replica B and replica B performs
the first service call when replica A already performs the last call.

Figure 4.5 reports the analytical and experimental results. In the parallel execution
scenario, the call delays at both replicas are the same and equal to the call delay
when using a single replica. In the sequential execution, replica B experiences sig-
nificantly lower service call delays, which basically amounts to the round-trip time.
This is because these calls have already been processed by the node due to the calls
performed by replica A, so the node simply returns the replies from the log. Fi-
nally, in the interweaved execution, for the first call, the slower replica B experiences
the same delay as the faster replica A for the third (and more time-consuming) call,
while the rest of the calls execute very fast, like in the sequential execution scenario.

It is important to stress that the experimentally measured delays are close to the
ones estimated analytically. In general, the service call delay is strictly bounded by
the processing time of the most time-consuming service call. Also note that any ad-
ditional replica(s) would experience a call delay within the lower and upper bounds
reported here, depending on the time of invocation with respect to the faster replica.

4.5.3 Replica synchronization delay on node failures

Once a node failure has been detected and the replica synchronization has been com-
pleted, all subsequent calls of the mission program to that node are handled based
on the local log of the mission controller, without any communication, thus T, is
negligible. Therefore, we focus on the overhead of the synchronization between the
replicas.

We analytically estimate Tsync = N X Tjoq, where N is the number of replicas and Tj,,
is the time it takes for a replica to send its own log entries to all other replicas via re-
liable multicast. This, in turn, can be expressed as Tj,, = L0gS/MaxP X Ty, where
LogS§ is the total size of the log entries to send, MaxP is the maximum packet payload
for the underlying network and T, is the time it takes to send a reliable multicast
message that occupies a full packet. With JGroups configured to exploit IP multicas-
ting and negative acknowledgements, each reliable multicast roughly translates to a

Chapter 4. Tolerance of Fail-Stop Failures Using Active Replication 30

2.00
= 2-replicas 4-replicas

1.75] 2-replicasot 4-replicas®®
w = 3-replicas + Analytical estimates
> 10| 3-replicas®™
& repd
]
L 125
s
2 1.00
©
N
c 0.75¢
£
v 0.50
g o
0

0.25¢

e i i ne M
f.do i 10 100

Log size (KB)

FIGURE 4.6: Replica synchronization delay on node failure

single packet transmission, yielding a T;,, of about 6 milliseconds for a fully loaded
packet of 1500 bytes over the 210 Mbps Ethernet network of the replica domain.

In a second series of experiments, we measure Tsync for 2, 3 and 4 replicas running a
mission program that periodically invokes a node. We also vary the total size of the
log entries that need to be exchanged between the replicas (LogS), from 1 KB, 10 KB
up to 100 KB. Note that LogS depends on the number of service calls performed by
the fastest replica to the node (before it failed) that have rnot yet been performed by
the slowest replica, as well as on the size of the node’s replies to these calls. But what
actually matters is the total size of this log information.

Figure 4.6 shows the results (average over 20 runs; there is no significant devia-
tion) for the naive and optimized version of the synchronization protocol (see Sec-
tion 4.3.4). The analytical estimates are, as before, very close to the measured delays.
We observe that the synchronization delay increases linearly to the size of the replica
logs and the number of replicas. Notably, the optimized version reduces the syn-
chronization delay significantly, which practically becomes constant irrespectively
of the number of replicas; for every additional replica the increase is lower than
0.01%. This becomes clearly visible for larger log sizes. The reason is that only the
replica that detects the failure first, includes in its synchronization message the log
entries for the failed node, while all other replicas do not re-send the same entries
and thus generate very small synchronization messages.

4.5.4 Service call delay in non-deterministic execution

The delay of a service call in the non-deterministic execution mode can be expressed
as Tean = Teneckpoint + Trtt + Tproc- As above, Tyt + Tproc represents the time it takes to
perform the actual call to the node. In addition, one has to pay the cost of a check-
point operation Tepeckpoint, Which can be expressed as Trec + Tiransfer, Where Trec is the
time it takes for the leader replica to record its state and T}, fer is the time needed to
transfer the checkpoint image to the follower replicas via reliable multicast. The state
recording delay T;.. depends on the number and size of data objects that were cre-
ated /modified by the mission program. The image transfer delay can be expressed
as Tyransfer = ImageS/MaxP X Ty, where ImageS is the size of the image, MaxP is
the maximum packet payload for the underlying network and T, is (as above) the
time it takes to send a single reliable multicast message that occupies a full network
packet.

Chapter 4. Tolerance of Fail-Stop Failures Using Active Replication 31

50,

B Tiq0e 1 follower replica . T

B Tianser 2 follower replicas = Analytical estimates
40 Teranster 3 follower replicas

301

Checkpointing delay (s)

104

o I

1 5
Checkpoint size (MB)

FIGURE 4.7: Checkpointing delay in non-deterministic execution

We have measured T, for a null service, with Ty, = 0 and T4 = 8 milliseconds
for an empty service call request and reply over the 1 Mbps WiFi network. We do
this for 2, 3 and 4 replicas (1, 2 and 3 follower replicas respectively). Also, we artifi-
cially vary the size of checkpoint images, from 1 MB, 5 MB up to 10 MB, which are
representative sizes for several test applications we have programmed in TeCoLa.

Figure 4.7 reports the results together with the analytical estimates. Given that the
cost for performing the call itself is negligible compared to the checkpoint delay
Teheckpoint, We only show the latter, broken down to the state recording delay T
and the image transfer delay Ty 450, As expected, the delay grows linearly to the
size of the checkpoint image. Note that the number of replicas does not affect the
checkpointing delay significantly; for every additional replica, the increase is lower
than 1% thanks to the efficient underlying reliable multicast implementation (as dis-
cussed above, T;,, = 6 milliseconds). However, it is clear that taking a checkpoint at
every service call incurs a significant penalty, especially when the execution state is
large. It is thus important for the mission program to accurately indicate the parts
that are non-deterministic, allowing the system to adopt the mode of deterministic
execution as much as possible.

32

Chapter 5

Tolerance of Byzantine Failures

5.1 Contributions and Outline

In this chapter, we study how to tolerate Byzantine failures of the mission controller
in centrally coordinated drone missions and propose an active replication scheme
that relies on synchronous communication with signed messages and tolerates f
Byzantine failures using N = 2 x f 4 1 replicas. We consider such a feature es-
sential for applications where the mission should progress normally and correctly
despite the Byzantine (i.e., arbitrary) behavior of the controller which may be due to
malicious attacks or software errors.

While the fundamental principles of active replication for Byzantine fault tolerance
have been laid out a long time ago, active replication is traditionally studied for the
server / service side of computer systems [155]. On the contrary, in our case the most
critical system component is the mission controller, which invokes the drones acting
as their client, mandating a different approach. Furthermore, the mission dynamics
due to possible failures of individual drones require special handling to ensure a
consistent execution of the mission.

Our main contributions are the following:

¢ We describe, in detail, the approach and system-level mechanisms for handling
a Byzantine behavior of the mission controller.

¢ We informally argue about the correctness of the proposed approach.

* We capture the overheads of a prototype implementation in a simulated envi-
ronment.

The rest of the chapter is organized as follows. Section 5.2 presents the key assump-
tions regarding the operation of the system model. Section 5.3 describes the mech-
anisms that achieve the desired Byzantine fault-tolerant functionality. Section 5.4
discusses a prototype implementation of the proposed approach. Finally, Section 5.5
presents indicative performance results through simulation experiments and dis-
cusses the actual practicality of our approach.

5.2 System Model

In our system model, drones are modeled as nodes that expose the available sens-
ing, actuation and mobility resources in the form of services that are being invoked
remotely by a mission program that describes the high-level mission objectives. The
same mission program is actively executed by multiple mission controller replicas, and

Chapter 5. Tolerance of Byzantine Failures 33

each replica invokes the nodes inside a separate replica-node communication domain.
Replicas communicate through the replica domain, whereas nodes do not need to in-
teract with each other for the purposes of the mission execution. For more details,
refer to Chapter 3.

The key assumptions are summarized as follows:
e Remote node service invocations have at-most-once semantics [105].
* Node failures follow the fail-stop model, i.e., a failed node stops operating.
* Node failures are detected by the replicas at the system’s transport/RPC layer.

e Mission controller replicas can experience Byzantine failures, i.e., they may
behave arbitrarily, appearing inconsistently both failed and functioning to dif-
ferent failure detection systems.

* Messages (at all communication domains) are signed, and all entities know
each other’s public encryption keys in order to verify signatures.

¢ Third parties are computationally bounded so they cannot forge signatures to
conduct masquerading or injection attacks.

¢ There is a known upper bound for reliable message delivery in the replica-
node domains and in the replica domain.

¢ The node’s request processing time is known. In practice, it suffices to have a
conservative upper bound for each type of service call.

¢ Mission programs are deterministic.

¢ Mission controller replicas execute the mission program at the same speed.
This can be achieved by running the mission controller software on machines
with the same processing capacity on top of a real-time operating system.

Regarding the upper bound delivery guarantees, modern wireless technologies like
5G can achieve high data rates in the gigabit scale, latency in the order of millisecond
and ultra-high reliability [182, 126]; thus, we consider that such an assumption is
realistic even for long-range communication.

5.3 Byzantine Fault Tolerance Mechanisms

At first, in section 5.3.1, we present the desired properties of a fault tolerance mech-
anism. Next, in section 5.3.2, we present an overview of the proposed approach that
satisfies these properties. Finally, in the remaining sections we discuss our approach
in more detail, in an incremental way.

5.3.1 Fault tolerance properties

The objective is to tolerate failures of the mission controller in a way that is fully
transparent to the mission program. We capture the desired functionality in the
form of the following properties:

¢ Byzantine Fault Tolerance. It is possible to tolerate not just simple fail-stop
failures, but also Byzantine failures of the mission controller. In particular, a
Byzantine replica may send a corrupt request to the node. It may also send a

Chapter 5. Tolerance of Byzantine Failures

34

* local service invocation
replica domain
+~-+ replica-node domain A
----- replica-node domain B
L = replica-node domain C |

MNodes (Drones)

/'__ -
(£ —_— .\
Mission Controllerr I system |(\' el —
Replica A iEsE layer J'5/< " remote” —AR
rogram / »_~«invocation % J
g i e L
= Al P
agreement
] e remote . T ETTR
) tion ™])
Mission Controller/ l .[SY“‘“—’“ S ___ invocation > ks
Replica B | | layer |] agreement e L0\ layer)
_ mission = L g
AN program £ . L
s ,,
¥ - - =
agreement & e

Mission Controller
Replica C

l _(system
layer

mission —— —
rogram

buffer

FIGURE 5.1: Overview of the system entities, their interactions and

the introduced mechanisms

request much earlier/later than the correct replicas or perhaps it may not send
any request at all.

¢ At-most-once Invocation Semantics. The at-most-once semantics of service
invocation assumed by the mission program are preserved in a transparent
way.

¢ Synchrony and Consistency. All correct replicas of the mission controller ex-
ecute the node invocations of the mission program in the same order and in

synchrony, despite the mission dynamics that can be caused by node failures.

These properties can effectively provide the illusion of a single “perfect” mission
controller that never fails/malfunctions and always executes the mission program

in a correct way.

5.3.2 Solution sketch

Our solution assumes N = 2 x f + 1 replicas for tolerating up to f Byzantine failures.
The main steps that are performed when the mission program invokes a node service

are as follows:

1. The replicas send a service invocation request to the node.

2. The node considers and starts processing the request only if it has received
identical copies from the majority of the replicas (f + 1).

3. The node executes the request and sends the same reply with the result to all

replicas.

4. The replicas wait a maximum time to receive a reply from the node. If no reply
is received within the given amount of time, the replicas infers that the node

has failed silently.

Chapter 5. Tolerance of Byzantine Failures 35

5. The replicas, before proceeding with the execution of the mission program, run
a Byzantine agreement protocol to decide the outcome of the node invocation
that will be communicated to the mission program.

Figure 5.1 illustrates the entities, the introduced mechanisms and the interactions
that take place in our system model. In the sequel, we start with the basic interaction
that takes place between the replica and the node to perform a service invocation.
We then discuss the case where there are no failures and all replicas of the mission
controller function correctly, followed by the different cases of Byzantine behavior.
Finally, we explain how to deal with the mission dynamics that can be caused by
node failures.

5.3.3 Basic service invocation

Every service invocation performed by the mission program is converted into a
blocking request-reply interaction between the respective mission controller replica
and the target node. The mission controller sends a request to the node, which con-
tains the replica identifier, a sequence number and the request parameters. The node
stores incoming requests in a buffer until it receives the same request (same sequence
number and same request parameters) from the majority of the replicas (f + 1). The
node then processes the request and sends a reply with the result to all replicas.

For the purpose of the following presentation, let Msg;,,» denote the largest possible
message delivery delay in the replica-node domain. Also, let Proc be the amount of
time that is needed for a node to process a given service request.

5.3.4 Fault-free operation

Recall that the mission program is deterministic, and replicas execute the mission
program at the same speed. Thus, they are expected to perform the same node
invocations in the same order and at the same time.

Figure 5.2 illustrates two indicative scenarios for a configuration with three replicas
that function correctly. In Figure 5.2a, the requests of r; and r, arrive at the node
with the maximum delay Msg,.x. Any of these two requests suffices to form the
majority, combined with the request of r3 that was received earlier. After the request
is processed, the node sends the reply to all replicas. In this scenario, replica r;
experiences the largest possible node invocation delay [1v,5x = 2 X Msgax + Proc.
In Figure 5.2b, the majority is formed at an earlier point in time, when the requests
of r; and r3 arrive at the node. Thus, processing starts before receiving the request of
r1 and the invocation completes with a smaller delay than in the previous scenario.

Note that in order for all replicas to resume the execution of the mission program
at the same point in time, every replica has to wait for Inv,,, from the point of
invocation, even if it receives the node’s reply earlier. In the scenario of Figure 5.2a,
rp and r3 have to wait in order to be in synchrony with r;. In Figure 5.2b, all replicas
have to wait. Although this waiting period is partly superfluous, since the node’s
reply arrives at all replicas earlier than in Figure 5.2a, the replicas have no global
view and cannot distinguish between the two scenarios.

Chapter 5. Tolerance of Byzantine Failures 36

Msgmax MSg,mx

I

I

NN/

i Proc |

Invmax

(A) Majority formed with the maximum delay

Mngax

Q 7
— N/

Proc

I

I

Inv, .«

(B) Majority formed earlier

FIGURE 5.2: Node invocation with correct replicas

5.3.5 Corrupt requests

A replica that experiences a Byzantine failure may send a corrupt request to the
node. Such requests are properly handled via the majority rule. As discussed above,
the node does not process a request unless this was sent from the majority of the
replicas (f + 1). Thus, even if all f Byzantine replicas sent the same corrupt request,
this will be ignored as it will not gather the necessary majority.

Figure 5.3 shows an indicative scenario with two correct replicas r; and r3, and one
Byzantine replica r; that sends a corrupt request. The request of r; arrives after the
request of r3 but before the request of r1. The correct request is identified only when
the request of | arrives, at which point the node starts processing it. The arrival
time of the corrupt request is irrelevant as this does not affect the formation of the
majority. Also, the maximum invocation delay Inv,,x remains the same as when all

o Msguw 0 Mg

ISt

I

Q 7
NN

{ Proc

Inv, .«

FIGURE 5.3: Node invocation with a corrupt request

Chapter 5. Tolerance of Byzantine Failures 37

Msg
I
I / /

RN

Proc '

IanaX

(A) Correctly formatted request arrives early
Msgmax Msgmax

I

I

—

NN/

! Proc

Inv, .«

(B) Majority formed earlier

FIGURE 5.4: Node invocation with ill-timed requests

replicas function correctly.

Importantly, Byzantine replicas cannot flood the node’s buffer with arbitrary re-
quests. Since each replica is expected to execute the next node invocation only after
having completed the previous one, the node cannot have more than one outstand-
ing request for each replica in its buffer (any other request that is sent by that replica
can be simply dropped). Further, once the node identifies and processes a correct
request, it can safely remove/drop all requests with a smaller or equal sequence
number.

5.3.6 Out of sync and omitted requests

A Byzantine replica may send a correctly formatted request that is badly timed (out
of sync), which means that it arrives at the node too early or too late compared to
the correct replicas. Also, a Byzantine replica may experience an omission failure,
which means that it may not send a request at all or that the transmission may fail.
Figure 5.4 shows two indicative scenarios with two correct replicas r; and r3, and
one Byzantine replica 7.

In Figure 5.4a, replica r, sends its request earlier than expected. In this case, the
needed majority is formed as soon as the request of the first correct replica r3 is re-
ceived. Therefore, the node will start processing the request before receiving the
request of the second correct replica r;. This is not a problem at all, in fact it is effec-
tively equivalent to the scenario of Figure 5.2b for fault-free operation. In general,
the majority for a given request can be formed only after having received it from at
least one correct replica, which, in turn, ensures that all other correct replicas have
also sent the same request to the node and are expecting a reply.

Chapter 5. Tolerance of Byzantine Failures 38

Figure 5.4b shows a scenario where the Byzantine replica r, sends a request later
than expected. In this case, the majority is formed based on the requests of the correct
replicas r1 and r3. When the request of r; arrives, it is simply ignored/dropped.
Again, this is equivalent to the scenario for fault-free operation that is shown in
Figure 5.2a.

Note that Figure 5.4b also captures the scenario where the Byzantine replica does
not send any request at all, due to an omission or transmission failure. In this case,
the node will process the request exactly as discussed above.

5.3.7 Node failures

The assumption that all replicas execute the mission program in exactly the same
way can be invalidated if a node fails during service invocation. This is because
one replica may receive the node’s reply, while another replica may not receive the
reply and detect a node failure, leading to a different execution flow in the mission
program at these replicas.

To ensure identical execution of the mission program, all replicas must return the
same invocation result to the mission program, even if the target node experiences a
failure during invocation. To this end, after the basic node invocation completes, the
replicas run an agreement protocol to decide about the outcome of the invocation
that will be reported to the mission program.

It suffices for the replicas to achieve Interactive Consistency [127], where each replica
r; votes for a value v;. Correct replicas vote the outcome of the node invocation
that they have actually experienced: the reply received from the node or a node
failure if no reply was received within the bounds of the worst-case invocation delay
Inv,,qy. Byzantine replicas may vote for an arbitrary value or refuse to send some
of the expected messages during the agreement protocol. Given that messages are
signed, a Byzantine replica cannot change the contents of a message that was sent
by a correct replica. At the end, each (correct) replica decides for a vector 4 where
element d[i] corresponds to replica r;. If this is a correct replica, d[i] is equal to v;, else
d[i] can take any value but this will be the same at all correct replicas. The decision
about the outcome of the node invocation at each replica is v if at least f + 1 of the
vector elements d[i],1 < i < N are equal to v, else the decided outcome is that the
node has failed.

Recall that there are N = 2 x f + 1 replicas. Therefore, if all correct replicas receive
a reply from the node, the decided outcome for the node invocation will be that
reply. If all correct replicas detect a node failure, the decided outcome will be a node
failure. If the node fails during the invocation and some correct replicas receive a
reply from it while some other correct replicas do not receive a reply (detect the
failure), the decision depends on the vote of the Byzantine replicas. Notably, if the
final decision is that the node has replied, it is certain that the agreed reply is the
one that was actually sent by the node to at least one correct replica (else this value
cannot have an f + 1 majority). If the final decision is that the node failed, it is
certain that some correct replicas actually detected a node failure. In other words,
the Byzantine replicas cannot change the reply that was sent by the node, nor can
they introduce a phantom node failure, nor can they hide an actual node failure.

In any case, all (correct) replicas will decide on the same outcome. If the decision
is that the invocation succeeded, all replicas will return to the mission program the

Chapter 5. Tolerance of Byzantine Failures 39

MSginax MSgmax

I

I3 /
\ \ Byzantine

n agreement

protocol

—n

V=

. d=[f,?.v

,-

i Proc |

Inv.. Agree

FIGURE 5.5: Invocation with a node failure

result that was included in the node’s reply. If the decision is that the invocation
failed, they will all return an error to the mission program indicating that the node
failed. Thus, the mission program will follow the same execution path at all replicas.
Note that the replicas may decide that the invocation failed even though the node
may have managed to process the request and send a reply to some of the replicas.
This is consistent with the at-most-once semantics of node invocations.

Figure 5.5 shows an indicative invocation scenario for the case of a node failure,
with two correct replicas 71, r3 and one Byzantine replica r, that sends a corrupt
request as in Figure 5.3. In this case, the node fails right after sending its reply v
to one of the correct replicas r3 and to the Byzantine replica r,. The second correct
replica r; does not receive a reply and detects the node failure. In the agreement
protocol that follows, r3 truthfully proposes vz = v (the reply it received from the
node) while 71 also truthfully proposes v; = f (the experienced node failure). The
final decision depends on the proposal v, of the Byzantine replica ;. If v; = v, the
common decision at all replicas will be v, which is logically consistent since the node
actually generated that reply. Else, if 7, proposes any other value or remains silent
and does not participate in the agreement protocol, replicas r; and r3 will decide f
(node failure), which is also consistent with the at-most-once semantics of service
invocation.

To maintain synchrony, the replicas commence the agreement protocol I1v,,,, after
the point of invocation. For f Byzantine failures, the agreement takes f + 1 commu-
nication rounds [37]. Assuming a message is delivered to all replicas latest within
RMsgax and that the transmissions that are performed concurrently by the N repli-
cas in each round are serialized over the underlying network, agreement is reached
in (f4+1) x N X RMsgmax. If, however, the replica domain allows concurrent trans-
missions to be performed in parallel, the agreement time is (f + 1) X RMsguqx. The
replicas agreement time is added to Inv,,, to give the total node invocation delay
experienced by the mission program.

5.4 Implementation

We have developed a proof-of-concept implementation of the proposed replication
approach in the TeCoLa programming framework [85] that supports the high-level

Chapter 5. Tolerance of Byzantine Failures 40

({)) Mission Controller Mission Controller({))
", Replica A Replica B 'I’

é’ “Node (Drone) Node(Drone) % -

TeCola
Mission Mission
Control Control
Runtime Runtime
Agreement Node Node
Protocol Runtime Runtime

Transport Transport

requestT

1 A

nequestI

public-key N v
cryptosystem

FIGURE 5.6: Software architecture of the prototype

coordination of teams of unmanned vehicles like drones. The software organiza-
tion of the mission controller and node entities is shown in Figure 5.6. In our ex-
periments, we employ several instances of the mission controller that execute the
mission program in parallel.

The interaction between the mission program and the node services is implemented
through suitable middleware and runtime support at both the nodes and the mission
controller. The runtime environment of the mission controller is responsible for the
execution of the mission program, while the node runtime environment supports the
service-oriented access of the node’s mobility and sensing/actuation capabilities.
The request-reply interaction between the replica and the node is implemented in
the spirit of remote procedure calls (RPCs). The number of transmission attempts
can be flexibly configured, allowing this to be set according to the reliability of the
underlying communication channel.

The node runtime environment handles incoming requests as discussed in the previ-
ous section. When a correct request is identified, the local service is up-called and the
result is returned as a reply. In addition to the request-reply protocol for the service
invocation, the mission controller runtime environment implements the agreement
protocol between the replicas. In each communication round, every replica sends to
all other replicas a message with the required information: initially its own vote and
in subsequent rounds the votes it received from the other replicas. As an optimiza-
tion, in each of the f + 1 communication rounds, each replica packs all its messages
in a single multicast message that is sent to all other replicas using UDP/IP multicast
(assuming an underlying network with native multicast capability). When a replica
receives such a multicast message, it unpacks it and uses only the information rele-
vant for it. Thus, the communication cost for the agreement protocol is (f +1) x N
multicast messages. Again, the number of transmission attempts is configurable.

For message authentication, we use the RSA public-key cryptosystem [148] to gen-
erate digital signatures that provide message authentication, message integrity and
non-repudiation. The messages are signed before transmission and verified upon
reception. All mission controller replicas and nodes have each other’s public keys
pre-installed locally in order to perform the verification process without requiring
the transmission of the public key along the messages.

Chapter 5. Tolerance of Byzantine Failures 41

5.5 Evaluation

In this section, we report and discuss the overhead of service invocation, which was
experimentally measured using a controlled simulation setup.

5.5.1 Experimental setup

Our measurements are performed using the simulation environment we have de-
veloped and presented in chapter 2, section 2.3, where different virtual drones (v-
drones) can be controlled from one or more virtual ground stations (v-GSs). The
v-drones run the node software stack and the v-GSs run the mission controller soft-
ware stack. Each of these entities is packaged as a Linux-based Virtual Machine
(VM) with 4 vCPUs and 3GB of RAM on top of the KVM hypervisor [97] running in
a cloud-like computing infrastructure. The clocks of the guest VMs are synchronized
to the clock of the host machine with a sub-microsecond accuracy, using the virtual
PTP hardware clock (PHC) mechanism of KVM. The mission controller replicas start
the execution of the mission program synchronously, at a given time that is specified
via a configuration parameter.

Each replica-node domain is mapped to a separate WiFi network used for the com-
munication between the specific replica and the v-drones. The WiFi networks are
simulated using ns-3 [147] configured to the 802.11b standard. The replica domain
used for the communication between the v-GSs is implemented via the default KVM
networking facility as a shared Ethernet network. Replicas send messages to each
other using the native multicast capability of the network. Concurrent message
transmissions are serialized.

To capture the raw overhead of the fault tolerance mechanism for typical coordina-
tion commands (these do not include large payloads), we use a mission program that
performs a series of null service calls to a drone node. We use a configuration with
N = 3 replicas of the mission controller that can tolerate f = 1 Byzantine failure; we
expect this reliability level to be sufficient for most applications.

5.5.2 Basic costs

Based on the time it takes to transmit a null service request-reply message in the
replica-node domains, we set Msg;;qx to 3 ms for a maximum number of three trans-
missions in the RPC transport layer. On top of this comes the message packing and
digital signature overhead at the sender and the unpacking and signature verifica-
tion overhead at the receiver, for which we allow another 1.5 ms. Null requests are
processed instantly, so Proc is assumed to be zero.

To tolerate f = 1 Byzantine failure, the agreement protocol between the mission
controller replicas involves f +1 = 2 communication rounds. We set RMsgqx to
11.5 ms, based on the transmission time for multicast messages in the replica do-
main, for a maximum of three transmissions. Also, in each communication round,
we allow 5.5 ms for the packing/signature of the messages sent and for the unpack-
ing/verification of the messages that are received by the replicas.

Chapter 5. Tolerance of Byzantine Failures 42

Major cost item time (ms) %
Request-reply processing 3.0 3.5%
Request-reply transmission 5.5 6.5%
Vote processing 10 11.8%
Vote transmission 66.5 78.2%
Total 85.0

TABLE 5.1: Actual costs of node invocation (worst-case)

5.5.3 Node invocation overhead

We measure the node invocation delay for over 100 consecutive invocations per-
formed by the test mission program, with all replicas of the mission controller work-
ing properly. Note that failures do not affect system operation since the Byzantine
fault tolerance mechanism works based on the worst-case timing bounds.

The average delay that is experienced by the mission program, with the Byzantine
fault tolerance mechanism configured to use the above timings, is roughly 90 ms.
Table 5.1 gives a breakdown of the actual costs for the case where the full number
of transmissions is performed to achieve successful message delivery in both the
replica-node and replica domains. The message processing costs include the respec-
tive packing/signature and unpacking/verification overheads. It can be inferred
that the internal timing of the Byzantine fault tolerance mechanism is not too con-
servative given that the invocation delay at the level of the mission program is close
to the total actual costs.

We also observe that 90% of the cost is due to the overhead of the agreement protocol
between the replicas, which is clearly the performance bottleneck. On the one hand,
this speaks in favor of using a faster network for the replica domain and/or cheaper
message signature and verification methods. For instance, if the replicas would com-
municate over a fast Gigabit Ethernet, this could reduce the vote transmission time
to 1/4. Based on Table 5.1, this would, in turn, reduce the actual invocation delay to
about 36 ms, a substantial 2.4x improvement. On the other hand, a slower commu-
nication between the replicas and the nodes would have a relatively small impact.
As an example, if the communication delay in the replica-node domain increases by
3x, the estimated node invocation costs would be around 96 ms, just 1.13x higher
than the current value.

5.5.4 Results discussion

Recall that the mission controller is responsible only for the high-level coordination
of the drones. In particular, it is not involved in tight control loops that concern the
stability of the vehicle and obstacle avoidance and is not expected to interact with
the nodes very frequently. Therefore, invocation delays even in the order of 100 ms
are quite acceptable. To give a concrete example, in a mission where the drones
move at a speed of 10 meters/second, the above invocation delay roughly translates
to a distance of 1 meter, which is fine for high-level coordination purposes. Note that
if certain actions require high position accuracy, the mission program can explicitly
wait for the drones to reach the required position, before invoking the service that
performs the action.

Tolerance to a single Byzantine failure at such high overhead may not seem attrac-
tive, at first. Nevertheless, in practice, this is already a very significant capability

Chapter 5. Tolerance of Byzantine Failures 43

for this particular type of system that can make all the difference between success
and disaster. Also, since Byzantine failures are expected to be rare, it is unlikely that
a higher degree of Byzantine fault tolerance needs to be provided for the mission
control system. Even if this should be required, acceptable performance could still
be achieved using a fast network setup for the replica domain.

44

Chapter 6

Related Work

In this chapter, we discuss related work in the field of fault-tolerant systems and
the differentiation between our research and previous efforts. We organize literature
discussion across three sections: the toleration of fail-stop failures, the Byzantine
fault tolerance, and works specific to autonomous/robotic systems.

6.1 Tolerance of Fail-Stop Failures

Extensive research has been done in regard to fault tolerance in distributed systems.
Among the most well studied techniques are rollback recovery [41] and replica-
tion [53].

Rollback protocols assume a stable storage that is used to store recovery information
during normal execution. This state recording operation can be done in an indepen-
dent/uncoordinated [15], coordinated [25] or communication-induced way [150].
After a failure occurs, the failed component uses this information to restart its execu-
tion from a more recent state. To reduce the extent of rollback and guarantee that the
pre-failure execution can be deterministically regenerated, log-based protocols [3]
have been proposed. Such log-based methods enable a system to recover beyond
the most recent set of consistent checkpoints by combining checkpointing with log-
ging and replaying of non-deterministic events, such as messages/interaction with
other systems. Thus, they are particularly attractive for applications that frequently
interact with the outside world.

Software-based replication can be characterized as passive or active and its main
purpose is to achieve fault tolerance of critical components by employing multi-
ple instances of them that can fail independently. In the passive replication tech-
nique [20], also known as the primary-backup approach, one of the replicas, called
the primary, is responsible for receiving and processing input and producing out-
put. The remaining, called the backups, are merely notified to apply the changes
produced by that processing. On the contrary, active replication [155], also known
as state machine approach, is a non-centralized approach where all the replicas re-
ceive and process (concurrently) the same sequence of inputs. This leads to masking
the failures and achieving better performance, making it ideal for (soft) real-time
applications. However, it requires that the output produced by all the replicas is
the same, i.e., the processing is deterministic. Viewstamped Replication [123] and
Paxos [98] are two such well-known protocols, designed to tolerate f fail-stop fail-
ures using N > 2 x f + 1 replicas. In addition, there are variations that combine
elements from both passive and active replication strategies [176].

Chapter 6. Related Work 45

There are also fault tolerance schemes that combine rollback recovery with replica-
tion. For instance, [142] proposes a mechanism to reduce the expected completion
time of long running computations in the presence of failures. To achieve this, it uses
multiple active replicas that take checkpoint in case another replica fails. Then, this
checkpoint state is used to restart the failed replica.

While the vast majority of the replication-related bibliography focuses on replicat-
ing the server side, in our work we apply replication to the client side (the mission
controller), which is the most critical component. Also, traditional active replication
requires coordination between the replicas during each request in order for them to
be handled in the same order, whereas in our approach the replicas need to syn-
chronize only when a node fails. Finally, to support non-deterministic applications,
we adapt our approach to a semi-active technique supported by appropriate check-
pointing.

6.2 Byzantine Fault Tolerance

Byzantine fault tolerance (BFT) is the dependability of fault-tolerant computer sys-
tems to random/spurious hardware or software faults, or malicious attacks. Active
replication (or state machine replication) is the general technique used to support
such functionality. In this case all replicas receive and process in parallel the same
sequence of inputs, and the individual outputs are then combined to determine the
final result, typically following a majority scheme to deal with Byzantine behavior.

There are many research efforts on making Byzantine fault-tolerant systems practical
and efficient. Practical Byzantine Fault Tolerance (PBFT) [24] tolerates f Byzantine
failures with N > 3 x f 4+ 1. The safety property is preserved even under asyn-
chrony, but progress is made only during synchronous periods. Zyzzyva [79] im-
proves performance through systematic exploitation of speculation in the replicas,
which automatically adopt the order proposed by the primary and use agreement
protocols only in case divergence is observed by the clients. [10] improves the ro-
bustness by executing multiple instances of the Byzantine fault tolerance protocol,
each with the primary replica placed in a different physical machine. [74] provides
better resource efficiency, by using fewer active replicas (f + 1) for both agreement
and execution during normal operation, while in case of fault detection or suspi-
cion it switches to a more resilient agreement protocol. The authors in [174] present
a trusted /tamper-proof service for assigning unique and monotonically increasing
identifiers to messages. Based on this, they present improved versions of PBFT and
Zyzzyva that achieve Byzantine fault tolerance in asynchronous systems for only
2 X f + 1 replicas with the minimum number of communication steps.

All the above work concerns the fault tolerance of server-side logic towards its clients.
In contrast, in the system model for coordinated missions that we consider in this
thesis, our work addresses the problem of a potentially faulty client that sends com-
mands to different independent servers.

The problem of consensus is fundamental to distributed systems research. The FLP
impossibility result [47] proved that in a fully asynchronous system there is no deter-
ministic algorithm that can achieve consensus in the presence of even just one fail-
stop failure. In synchronous systems, the Byzantine agreement problem [100] and
the equivalent interactive consistency problem [127] are solvable with N > 3 x f +1
processes, without using authentication (signed messages), but have exponential

Chapter 6. Related Work 46

message complexity. In settings where there is authentication support so that pro-
cesses can safely sign their messages (and proposed values), the above agreement
problems can be solved with just N > f processes.

Fully polynomial protocols for both the authenticated [37] and the unauthenticated [51]
settings require f + 1 communication rounds. To circumvent this lower bound, the
use of randomization has been explored in [141], leading to expected constant-round
protocols for both the authenticated [75] and the unauthenticated [45] settings. Such
algorithms could be employed for the synchronization between the replicas of the
mission controller. But it would not be possible to give a strict upper bound for the
node invocation delay, which can be important for the type of system we study in
our work.

6.3 Fault Tolerance in Robotic Systems

Fault tolerance has also been studied in the context of robotic systems. In [78], a
checkpointing and recovery protocol is presented for achieving resiliency against
sensor failures / attacks in CPS systems. In addition, in [33], a framework is pre-
sented for the detection of both software and hardware failures, and the fault miti-
gation through self-adaption or cooperation between multiple robots.

In swarm robotics, tolerance to faults of single robots is essentially a built-in fea-
ture. Failures are typically detected through biologically inspired techniques [27,
76], which exploit the natural redundancy of the (large) swarm. Since robots do
not have predefined roles, reorganization is achieved in a self-healing fashion [16,
166]. Still, even swarm-based systems may need to be driven by external high-level
commands, which leads to the problem we study in this work.

There are also works targeting multi-robot collaborative systems, where multiple in-
dependent robots cooperate to accomplish a common goal/task. ALLIANCE [125] is
a software architecture that facilitates cooperative control of teams of mobile robots
for achieving fault tolerance. It is a distributed, behavior-based architecture that al-
lows each robot to adapt its actions during a mission. This way, if a robot fails, its
tasks are dynamically re-allocated to the remaining team members. [13] presents a
programming abstraction for handling failures in ensembles of robots. The proposed
abstraction allows the application programmer to annotate code blocks that include
critical actions and define compensating actions in case a failure occurs. However,
in both approaches, the fault handling and recovery is the responsibility of the de-
veloper, whereas our work practically achieves full transparency for the developer
of the mission program.

The specific system model for centrally coordinated multi-drone missions that we
consider in this thesis, comes with its own peculiarities, dictating a different ap-
proach. In [84], a passive replication approach is described, using a combination of
checkpointing and logging to support a rollback and replay of the mission program
in case the primary mission controller fails. However, it covers only deterministic
mission programs and fail-stop failures. Differently, in this thesis, in order to support
fail-stop failures of the mission controller, we propose an active replication approach
in conjunction with a logging mechanism which can also utilize a semi-active repli-
cation scheme in order to support non-deterministic operations. In addition, we use
active replication with an agreement protocol to address Byzantine failures under
certain assumptions, which offers even more dependability to this kind of systems.

47

Part 11

Managed Operation, Testing and
Integration of Drone Applications

48

Chapter 7

Flexible Deployment and Safe
Operation of Drone Applications

7.1 Contributions and Outline

In this chapter, we present a holistic approach towards supporting a more reliable
managed operation of drone applications on a shared drone infrastructure. This is
achieved through a software platform that takes care of the automated deployment
and controlled execution of drone applications, coupled with corresponding simu-
lation and digital twin support for detecting bugs before deployment and indicating
possible malfunctions during operation in the real world, respectively. We deem
that such an approach can offer various benefits. On the one hand, the software
platform can support in a flexible way the execution of application code directly on
the drone, making it possible to support data-driven applications with tight-control
loops. At the same time, it can capture actions that violate certain restrictions posed
by the authorities and handle them appropriately, ensuring that the application can-
not behave in an arbitrary way. On the other hand, the simulation and digital twin
support adds an extra safety layer to drone operations, contributes to building trust
between the various stakeholders in such a drone applications ecosystem and could
make drones more acceptable to the wider public.

Our main contributions are the following:

¢ We present the concept of a modular architecture combining a platform as a
service (PaaS) system for drone applications, which offers automated deploy-
ment and restriction enforcement, with corresponding simulation and digital
twin support that can be used to detect bugs before deployment and to indicate
possible malfunctions during operation in the real world, respectively.

* We introduce suitable descriptors that capture and enforce the desired appli-
cation functionality.

¢ We present in detail the design and the various configurations of the testing
infrastructure.

e We discuss the most important aspects of a proof-of-concept implementation
regarding both the Paa$S system and the simulation and digital twin support.

¢ We showcase how the proposed work can be used in practice through repre-
sentative case studies.

The rest of the chapter is organized as follows. Section 7.2 presents the overall sys-
tem concept. Section 7.3 presents the design of the PaaS system and discusses the

Chapter 7. Flexible Deployment and Safe Operation of Drone Applications 49

various metadata descriptions needed to support the desired application deploy-
ment and enforcement of restrictions. Section 7.4 presents the design of the simu-
lation environment and digital twin support that we propose for this PaaS system.
Section 7.5 describes the implementation of our proof-of-concept system, focusing
on the components of the Paa$S that provide the desired deployment and controlled
execution functionality and the main aspects of the simulation and digital twin se-
tups. Finally, Section 7.6 presents the experiments performed to validate our pro-
totype using both the simulation and digital twin functionality for indicative test
applications under different execution scenarios.

7.2 Concept

Several drone applications must run directly on the drone to perform certain oper-
ations on board. For instance, some applications need to control the navigation/
movement of the drone, including takeoff, path planning and landing. In addition,
various sensing, processing and actuation tasks may have to be performed on the
drone to support application-level control loops with minimal latency, or simply to
avoid sending large amounts of raw data to the cloud. Such applications are cur-
rently deployed on privately owned drones in a manual way, while the responsible
authorities that grant the flight permission do not have actual control on the opera-
tions that will be performed by the application at runtime.

Taking a different approach, we envision a system that provides drones as resources
that can be used in a flexible way to run different applications directly on them in
the spirit of fog/edge computing [18]. This should be done in a transparent and
isolated way, so that the user does not have to deal with the management of the
physical infrastructure or worry about side-effects due to application bugs.

In addition, the coexistence of multiple drones in residential areas, as it is being
envisioned in the smart city concept, raises several safety and privacy issues and
naturally leads to skepticism, limited acceptance by the public and, in rare cases,
even to aggressive reactions [120]. To gain the citizen’s trust, such systems have to
be engineered to address safety and privacy by design, through suitable mechanisms
that can be easily integrated and used to detect bugs and malfunctions.

In the following, we present the concept of such a system in detail.

7.2.1 Objectives

Our high-level goal is to enable a safer integration of drone applications in the urban
environment, through suitable system support. The key objectives of the envisioned
system are described below.

Simple and flexible application deployment. It should be possible to deploy appli-
cations on drones in a transparent way, in the spirit this is done today with cloud-
based applications. This calls for a suitable application execution environment on
the drone that provides isolation, along with minimal overhead and portability across
different platforms. Furthermore, to automate the assignment of drones to applica-
tions, appropriate descriptive specifications are needed to capture the flight capabil-
ities and sensing/computing/actuation resources of the available drones as well as
the respective application requirements.

Chapter 7. Flexible Deployment and Safe Operation of Drone Applications 50

Strict compliance to safety and privacy restrictions. It should be possible to enforce
safety and privacy constraints regarding drone operation. This calls for a central
management system, which is aware of all the restrictions and the currently active
applications and is responsible for giving the initial clearance to applications, com-
bined with suitable monitoring mechanisms on the drone, which detect and handle
violations at runtime. Furthermore, the potentially complex nature of these restric-
tions necessitates the explicit description of the application’s expected behavior as
well as an agreement between the application user and the management system re-
garding the actions that will be taken in case of (attempted) violations.

Integrated offline and runtime testing support. It should be possible for application
developers to test both the platform and the application before deployment. This
calls for a suitable simulation environment that can make it possible to perform a
wide range of tests regarding both the platform itself and the applications that run on
top of it. Furthermore, it is important to detect unexpected deviations and potential
malfunctions of the drone at runtime. This can be addressed through appropriate
digital twin support for the drone, that makes it possible to detect, at runtime, large
deviations of the application execution from the expected behavior.

7.2.2 Main entities and stakeholders

We envision an open environment where (in principle) anyone can develop an ap-
plication or provide a drone that can be used to run applications, and users are free
to run any application at any point in time. The main entities, stakeholders and their
interrelationships are shown in Figure 7.1.

Drone-based applications come in the form of independently deployable and runnable
software components with certain sensing/actuation requirements as well as com-
puting and communication requirements. The application may also require certain
flight-related capabilities, such as hovering. In turn, drones serve as application
hosts with specific sensor, actuator, computing and communication resources as well
as specific flight/maneuvering capabilities, depending on the underlying hardware
and flight platform, respectively.

The application developer implements a drone application, packaged so that it can
run on top of a standardized runtime environment (the system may provide differ-
ent options for this). The developer also specifies the drone resources and capabili-
ties that are required by the application to function properly. Before an application
can be registered with the system, it may go through a formal approval process,
which may include code review and extensive testing in simulators or real-world
testbeds.

The drone provider owns a drone to be made available for third-party applications.
In order for a drone to be registered with the system, it has to pass flight-readiness
tests and be covered by proper insurance. The provider also specifies the drone’s re-
sources, capabilities and limitations in terms of sensing, actuation, computing, net-
working /communication and flight ability. Lastly, one of the system’s approved
application runtime environments has to be installed on the drone.

The management authority operates the drone management system. It also provides
the certified application runtime environment(s) for the drone platforms along with
the various components that constitute the testing infrastructure. It also defines the
restrictions regarding the usage of the airspace, like flight altitude, no-fly zones as

Chapter 7. Flexible Deployment and Safe Operation of Drone Applications 51

; o drone
registers capabilities
D- : _F";)’-
rone
Provider @ =) monitors & interacts with
has installed !
R W
‘ provides restrictions //—a\ "Li" =
e)
x — ® $ ®@ @ @ A
Management = certified management testing
Authority ; conﬁ_or ms drone system infrast/r\ucture
o with runtime - :
™ | . A
“ submits ' runs on
User deployment !
plan “-._configures | deploys & ;

monitors

Ty i
& registers % :
JE—— fimsacsaadannnaand A

Application . ® [j

Developer

requirements application
; submits configures
testing

Tester scenario

FIGURE 7.1: Main entities, stakeholders and relationships

well as areas where it is not allowed to use specific sensors or actuators of the drone
platform. These restrictions create the regulatory context in which applications have
to operate. Some of them may stem from standard flight safety regulations, while
others may have to do with the geographical morphology or the intended use of
specific areas. Also, it provides the testing infrastructure consisting of a suitable
simulation facility.

The user selects a registered application and submits a corresponding deployment
plan for execution. The area of operation is declared in the plan (this can be a set of
waypoints or an entire area, depending on the application) and the user may select
one of the registered drones to run the application, or let the system pick one that
satisfies the application’s requirements. As a last step, the user has to agree on any
restrictions that apply to the area of operation and on the specific actions that will
be taken by the system in case of violation. Once approved, the deployment plan
serves as a contract regarding the behavior of the application.

Finally, the tester can be anyone from the previous stakeholders. It composes and
submits a testing scenario consisting of the description of the required setup and
the checks that should be done during execution and after completion. The sce-
nario configures accordingly the testing infrastructure, which may include setting
up a simulation environment and/or interacting with real drone(s). The results are
collected to a central repository and, depending on the nature of the test, they are
displayed to the tester during the scenario execution or after its completion.

7.3 PaaS Approach

In section 7.3.1, we present the high-level design of the platform as a service system,
and in section 7.3.2 we discuss the structured descriptions that drive the automated
application deployment, monitoring and violation handling.

Chapter 7. Flexible Deployment and Safe Operation of Drone Applications 52

application
execution status
Management
Controller i
application
deployment plan
extended plan,| | status application
restrictions, info o ——
corrective] H
actions i
/ -, \ commands '
" T
e Application
[Application i Client
4 data :
Management E
Agent
Critical services &
\ resources

FIGURE 7.2: Main system components and basic interactions

7.3.1 Overview

Figure 7.2 presents the high-level system architecture, while Figure 7.3 illustrates the
basic application deployment and monitoring process. The role of each of the system
component is briefly discussed in the sequel.

The management controller runs in the cloud and keeps track of all drone-based ap-
plications that are currently running or are scheduled to run. The controller also
determines whether a newly submitted application plan can be accepted for execu-
tion. More specifically, to approve a plan, the controller checks its requirements vs
the available resources, other application plans and the various restrictions that may
be relevant for the application at hand. If there are no conflicts, the application is
deployed and starts running on the selected drone.

The management agent runs on the drone and is responsible for monitoring the oper-
ation of the application, detecting invalid behavior and enforcing corrective actions.
As part of the application deployment process, the agent receives from the controller
information about the intended / agreed area of operation as defined in the deploy-
ment plan, the restrictions that may apply to that area and the respective actions to
be taken. During application execution, the agent intercepts through a monitoring
module all application requests towards the sensors and autopilot of the drone, to
check that these conform with the restrictions. In case of a violation, the request
can be rejected and/or some corrective action may be applied. If there is a major (or
repetitive) violation, the agent takes over control and applies the predefined fail-safe
action, e.g., landing at a safe location.

The management controller and the agent regularly communicate during applica-
tion execution. The agent periodically sends status information updates to the con-
troller, regarding the progress of the application, the current state of the drone,
any reported violations and the corrective actions that were taken in response. On
the other hand, the controller sends updates regarding the general or application-
specific restrictions.

Chapter 7. Flexible Deployment and Safe Operation of Drone Applications 53

Define & submit
application plan

Check
constraints / conflicts

L Deploy application J

I

major violation / Execute & monitor minor violation /
emergency application emergency
Terminate application & Apply corrective
enter failsafe operation action

FIGURE 7.3: Application deployment and monitoring process

The management controller exposes a remote API that enables the submission of ap-
plication deployment plans as well as the reception of updates regarding the deploy-
ment and execution status of applications. This API can be used to build interactive
user interfaces and application-specific clients that may also communicate directly
with the deployed application on the drone without going through the controller, as
shown in Figure 7.2.

7.3.2 Structured descriptions

To enable the automated application deployment, monitoring and violation han-
dling, several pieces of information must be described in an explicit way so that they
can drive the corresponding mechanisms of the drone management system. More
specifically, one needs to capture: (i) the resources and capabilities of each drone;
(ii) the requirements and parameters of each application; (iii) the flight-related and
sensor-related restrictions for the target environment (e.g., an urban area), along
with the actions that can be taken in case of violations; (iv) the parameters of the
submitted application deployment plans, including the approved flight plan, the
relevant restrictions and corrective actions.

Below we provide indicative examples for these structured descriptions. For pur-
poses of illustration, these are kept simple and focus on aerial vehicles with vertical
take-off and landing capability (the most common type of drones used in urban envi-
ronments). The actual descriptions are more elaborate and verbose; they are defined
in JSON and YAML formats and are described by suitable JSON schemas that are
also used to perform an automated validation.

Drone descriptions include general properties, physical and flight-related features
and computing/sensing resources. An indicative example is given in Listing 1 for a
custom quadcopter.

Application descriptors include the flight, computing and sensor requirements that
need to be satisfied in order for the application to function in a satisfactory way. Part
of the description includes the type of navigation configuration information the ap-
plication needs in order to control the drone’s movement as desired. Currently, there

Chapter 7. Flexible Deployment and Safe Operation of Drone Applications 54

Listing 1 Drone descriptor
id: 123
model: custom

type: quadcopter

category: small

physical features

dimensions: { height: 30cm, length: 50cm, width: 50cm }
weight: 1200g

flight features

autopilot: ArduCopterV3.6.11

max-speed: 15m/s

max-alt: 50m

max-time: 156min

capabilities: [hover]

computing & communication resources

platform: RaspberryPi3

cpu: ARMv71

ram: 1GB

storage: 5GB

os: Raspbian

networking: [WiFi, 4G]

sensor resources

camera: { type: RGB, res: 1920x1080, model: ModelX }

O ® N o Ul e W N =

I ST S T S S S S Gy
N = S © ®» 9o Ok ©® 0 = O

are two such options: path-based and area-based. The former is for applications de-
signed to move along a path defined as a list of waypoints that will be visited in
sequence. The latter is for the case where the application will move within an area,
but the exact path that will be followed within that area is not known in advance
and is decided /adapted by the application at runtime. Listing 2 shows a descriptor
for a surveillance application that expects as input a sequence of waypoints.

Listing 2 Application descriptor
id: 456
class: surveillance

navigation-type: waypoint-based

flight requirements

max-speed: 10m/s

min-alt: 20m

max-alt: 30m

capabilities: [hover]

computing & communication requirements
cpu: ARMv71l

ram: 512MB

storage: 1GB

os: Raspbian

networking: [4G]

sensor requirements

camera: { type: RGB, res: 1280x720 }
configuration

app-config: waypoints

O ® N U ke W N =

e <
® N Ul R W N =R O

The restriction descriptors capture the limitations posed by the management author-
ities regarding drone-based operations, including the respective corrective actions in
case of an attempted violation. Each restriction concerns a specific area and can re-
main active continuously (until removed) or for a specific time interval. The target
area is defined by a shape that can be two-dimensional, in which case the restric-
tion is applied at all altitudes, or geometric, in which case the exact air volume is
described. Also, a restriction can include the specific features of the drones and/or

Chapter 7. Flexible Deployment and Safe Operation of Drone Applications 55

applications to which it applies. Listing 3 shows the descriptions of two restrictions:
R1 a temporary flight-related restriction (no-fly zone) that applies to small drones
that execute surveillance applications, and R2 a permanent sensor-related restriction
(for the drone’s camera) that applies to all drones and applications.

Listing 3 Restrictions descriptor
- id: Rl
class: flight-restriction

1
2
3 type: no-fly-zone

4 area: polygon{...}

5 activate: 10 Feb 2019, 17:00 CET, 3hrs
6 drone-features:

7 category: small

8 weight-less: 1500

9 app-features:

10 class: surveillance

11 actions:

12 - action: abort

13 parameters: land-wp
14 - action: correct-path
15 parameters: target-point
16 - id: R2

17 class: sensor-restriction
18 type: no-photo-zone

19 sensor: camera

20 area: circular{...}

21 activate: always

22 drone-features: all

23 app-features: all

24 actions:

25 - action: suppress

26 parameters: None

Each restriction is associated with one or more repair action(s) that can be performed
by the system in case of a violation. When multiple options are available, the user
specifies the preferred one as part of the application deployment plan. For example,
restriction R2 in the above description has a single repair action, which is to suppress
the usage of the camera. For R1I, if the drone tries to move in the specified no-fly
zone, one option is to abort the application and land the drone at a specific location.
A more relaxed repair action is to correct the drone’s course so that it remains within
the approved flight path/area. In this case, the application is suspended until the
correction is completed.

The different parameters of an application deployment plan are also captured via
a corresponding descriptor, as shown in Listing 4. Some parts are provided by the
user, like the application identifier, the target area/path and (optionally) the drone
to be used to run the application. Other parts are generated by the system based on
the features of the selected application and drone, like the assigned priority used for
future deconflictions, the navigation radius used to set the hard boundaries of the
air space that will be reserved for the application, and the restrictions that apply to
the area/path of operation.

Depending on the type of restrictions that are included in the plan, the user must
select the corrective action to be performed, if there are multiple options, and pro-
vide the necessary parameters, if any. In Listing 4, this information is in the actions
configuration section. For restriction R1, we show indicative configuration settings
for both options (the user has to choose one of them). More specifically, in case of the

Chapter 7. Flexible Deployment and Safe Operation of Drone Applications 56

Listing 4 Deployment plan descriptor
1 id: 789
configuration
drone-id: 123
app-id: 456
activate: 10 Feb 2020, 17.00 CET, 10min
app configuration

waypoints: [...]

system generated
priority: normal
navigation-radius: 10m
restrictions: [R1, R2]
user specified

O ® N U e W N

_m ke
@ N = o

actions-config:
- restriction: R1
action: abort
land-wp: [39.3618020, 22.9336374]
restriction: R1
action: correct-path
target-point: intersection(issued-wp, Rl-area)
restriction: comm-lost
action: abort
land-wp: [39.3618020, 22.9336374]

N
N N S © ®» 9 o O &
I |

abort action the land waypoint is specified, whereas for the correct-path action the
target location is specified as the closest intersection point of the waypoint issued by
the application and the polygon area specifying the borders of the no-fly zone. Note
that there is no entry for restriction R2 as this has a single repair action that does
not take any parameters. Finally, there is always a mandatory safety-related action,
which is activated when the communication between the management system and
the drone is disrupted. In this case, the default action is to abort the application and
land the drone at the location specified in the plan (see last line of the description).

7.4 Simulation and Digital Twin Approach

In this section, at first, we outline our approach regarding the simulation and digital
twin support. Next, in the remaining sections, we describe in detail the various
testing configurations.

7.4.1 Overview

A high-level view of the testing framework is shown in Figure 7.4. The basic simu-
lation entity is the so-called virtual drone (v-drone). It represents a simulated drone
that can run the complete software stack of a real drone, including the autopilot and
the Drone Runtime of the PaaS platform. The v-drone can be configured to work in
two different modes: pure simulation mode and digital twin mode. Also, there is a
virtual Controller entity (v-Controller), which is a mockup implementation of the real
Controller of the PaaS platform, through which it is possible to issue commands to
and receive status updates from v-drones. Simulation scenarios may involve multi-
ple v-drones, which can communicate with the v-Controller and/or with each other
through one or more simulated wireless channels. Depending on the mode of op-
eration, virtual entities (v-drone and v-Controller) may co-exist and run in tandem
with real system entities (drone and Controller).

Chapter 7. Flexible Deployment and Safe Operation of Drone Applications 57

[Test Orchestrator]

- =
[Offline platform & application 1esting\'\ Runtime checking of application behavior

Controller

v !
v-drone| € v-drone| € v-drone —
(HITL) | © ST |] (bT)

¥ ¥ ik

\ [Event Logs | / ' Event Logs |

agent l

he—]
| agent &

[Results Analyzer]

FIGURE 7.4: High-level view of the framework providing simulation
and digital twin support for the PaaS platform

Real drones, v-drones and the v-Controller all feature an agent component. The agent
exposes an interface that is used by the Test Orchestrator in order to properly config-
ure the participating entities according to the needs of the specific test mode and
objectives. Also, the agent is responsible for creating logs where different runtime
events are recorded. These logs are sent to other agents, or they are stored in a central
repository for further processing by the Results Analyzer in order to confirm expected
behavior or detect deviations.

7.4.2 HITL and SITL configurations of v-drones

Platform and application testing can be performed at low cost and with zero risk
using a simulated setup that consists of a v-Controller and one or more v-drones.
In this case, the v-drone can be set to operate in a hardware-in-the-loop (HITL) or
software-in-the-loop (SITL) configuration. Figure 7.5 illustrates the most typical sim-
ulation options (for brevity, the agent components are not shown).

In the HITL configuration, the Drone Runtime environment and the application both
run on the hardware platform that is actually used in the real drone. The autopilot
may also run on this hardware if it supports a HITL mode. Otherwise, it runs as
a separate simulation entity (v-Autopilot) on the computing infrastructure of the
testing facility, in which case it interacts with the rest of the drone software stack
running on the target drone hardware through a proxy. Finally, it is possible to have
a pure SITL configuration where the entire drone software stack (autopilot, Drone
Runtime and application) runs on virtual hardware on the computing infrastructure.

The autopilot communicates with a simulator that implements the flight dynamics
model for the drone. It provides artificial sensor data for the accelerometers, gy-
roscopes, magnetometers and barometers, which normally come from the drone’s
inertial measurement units (IMUs) during real operation. This sensor data is used
by the autopilot to estimate the position, speed and acceleration of the drone, based
on which control decisions are taken and corresponding commands are issued to
the drone’s actuators (e.g., motors). In the HITL configuration, the flight dynamics
simulator runs as a separate entity, which is connected over serial or a fast network
connection to the hardware where the drone software stack is running. In the SITL

Chapter 7. Flexible Deployment and Safe Operation of Drone Applications 58

]
v-Controller #
v-drone (HITL) " v-drone (HITL/SITL) - v-drone (SITL)
........ o : e - -
¥ + ~]
- i=—=]
[Application] [Application [Application]

[Drone Runtime]

[

Autopilot

Autopilot
Proxy

(HITL) Autopilot (SITL)

Drone Runtime] Drone Runtime

il

ﬁ Flight Dynamics
Autopilot (SITL) ¥ Simulator _/

a

{ Flight Dynamics }

Flight Dynamics
Simulator

Simulator

FIGURE 7.5: Simulated setup with HITL and SITL configurations

configuration, there is also the option of running the flight dynamics simulator to-
gether with the autopilot as a single simulation entity. The simulation framework is
flexibly configurable allowing the user to choose the setup that is most appropriate
for the specific testing objectives.

7.4.3 Offline platform testing

Using these simulation configurations, it is possible to test different aspects of the
platform functionality. For this purpose, one typically designs suitable test applica-
tions. On the one hand, the resource allocation, application deployment and appli-
cation execution functionality can be tested using “benign” applications that imple-
ment different types of missions (the PaaS supports specific templates). On the other
hand, “malicious” applications, which intentionally attempt to perform actions that
violate the flight plan and related restrictions, can be used to confirm proper opera-
tion of the platform’s monitoring and violation detection/handling mechanisms.

It is also possible to run different scenarios aimed at testing exceptional and critical
situations. This can be achieved by instructing the v-Controller to issue commands
to the drone, which change the flight plan, update restrictions, or even request an
emergency landing, and then check that the platform behaves accordingly. Further-
more, one can experiment with intermittent connectivity and disconnected opera-
tion scenarios, by disrupting the (simulated) wireless communication between the
v-drone and the v-Controller and observing whether the corresponding fail-safe ac-
tions are triggered.

7.4.4 Offline application testing

Once the platform has been tested to a satisfactory degree, the same simulation en-
vironment can be used to test and debug concrete applications in a practically open-
ended fashion.

Chapter 7. Flexible Deployment and Safe Operation of Drone Applications 59

The usual objective of application testing is to verify that the application always
behaves as expected. This can be achieved by designing and running a wide range of
test scenarios, which combine different application configuration parameters, flight
plans and restrictions. After each test run, the outcome that is recorded in the event
logs can be compared to the expected application behavior.

Another typical objective of application testing is to confirm that the application
does not consume more computing and communication resources than declared by
the developer (as specified in the corresponding description). This can be achieved
by properly configuring the resources that are allocated to the application on the
v-drone as well as by observing the actual resource consumption during execution.

For such tests it typically suffices to use a pure SITL configuration of the v-drone. Of
course, it is also possible to use a HITL configuration if it is desired to run the ap-
plication (and the rest of the drone software stack) on the target hardware platform
used in the real drone. As discussed, the flight dynamics simulator can be integrated
with the autopilot or run separately, depending on the degree of fidelity required.

7.4.5 Digital twin for application checking at runtime

Despite elaborate offline testing, hidden hardware malfunctions or silent data cor-
ruption may still occur at runtime. It is thus highly desirable to be able to confirm
that everything runs as expected during the real mission, ideally without involving
a human observer.

This is achieved using a digital twin (DT) approach, a popular way of testing cyber-
physical systems. More specifically, next to the drone that runs the application in the
real world, the Drone Runtime and application also run on a v-drone. The v-drone
is configured to operate in a special DT /SITL configuration, where the autopilot is
replaced by a mockup and where the execution of the application and Drone Run-
time occurs in conjunction with a replay engine that receives information from the
real drone. Figure 7.6 shows a high-level illustration of the approach.

In the real drone, the agent component continuously records state-related informa-
tion and streams it to the v-drone acting as its digital twin. This information in-
cludes the application startup event, the application requests that are received by
the Drone Runtime (e.g., arm, takeoff, navigation or camera control commands), the
corresponding (potentially adjusted) requests forwarded by the Drone Runtime to
the autopilot, the Controller commands towards the Drone Runtime, as well as the
telemetry logs that contain the autopilot’s replies to received requests along with
status and flight-related data published by the autopilot periodically. Each piece
of information is timestamped using the drone’s system clock. In addition, the re-
quests of the application and the corresponding replies of the autopilot are tagged
with increasing sequence numbers.

In the v-drone, the replay engine uses this information to drive the local execution.
More specifically, the v-drone starts application execution with a pre-specified delay
defined by the user (operator). The startup delay must be large enough to ensure
a continuous flow of information from the real drone to the v-drone assuming a
worst-case data transfer delay and jitter over the wireless connection, but also short
enough to enable timely identification of execution inconsistencies. A startup delay
in the order of a few seconds is typically sufficient for this purpose. Once application
execution starts, the replay engine continuously checks the received information for

Chapter 7. Flexible Deployment and Safe Operation of Drone Applications 60

drone / R App N
{ Application

k4
"
Controller " :) Controller
]‘ [Drone Runtime

J
Iy

L4

[\ Autopilot - -{ Au::;;lot/

SE——/
v-drone _—

t Application } Replay Engine
Y

i 4
DT App . @
requests 1
g ‘ Drone Runtime }
commands

L)
3 ReailApp : Autopilot
Autopilot Mockup [+ logs

FIGURE 7.6: DT/SITL v-drone configuration

the chronologically next event, with a timestamp that is equal to the local clock value
minus the startup delay. Autopilot status messages are sent through the mockup,
whereas Controller commands are sent to the Drone Runtime.

The agent component of the digital twin intercepts application requests, retrieves
their type and passed parameters, and compares them with the ones that were is-
sued by the application running on the real drone. Obviously, requests with the
same sequence number should be identical. If so, the agent forwards the applica-
tion request to the Drone Runtime as usual, which, in turn, issues a request to the
autopilot mockup that replies using the corresponding information supplied by the
replay engine. Else, if the application request on the digital twin differs from the
one that was generated on the real drone, which may be an indication of a possible
malfunction, an alert is raised, and the digital twin terminates.

Note that this setup also makes the real application state easily accessible to testers,
for instance, to inspect several performance indicators in depth when exploring op-
timizations. This can be done efficiently by accessing the internals of the digital twin
in a direct way, instead of having to access the real drone over the wireless/mobile
network, which can introduce a large delay but also consume valuable resources
that should be reserved for more critical control operations.

7.5 Implementation

7.5.1 Platform as a service system

In our proof-of-concept implementation, in terms of software, we combine cloud-
based services that provide the application deployment and application manage-
ment functionality, with a drone-based environment that supports the controlled

Chapter 7. Flexible Deployment and Safe Operation of Drone Applications 61

Main
Management Svc

Restrictions

i
i
fily
di

|

[App Monitoring Svc] [App Deployment Svc

(System API) Client API
T L3
depl{:y{'nent plan, status deployment execution
restrictions, info - —— plan status
corrective
actions

4 S;Estem AP]\ \ [ClientApi]

Container commands
Application
- Client

[Application]j__

dat
Management i i

Agent

Web Application

MAVProxy

Monitoring Module]

4 :

¥

-

Autopilot Platform
(navigation, camera & actuator control)

FIGURE 7.7: Software architecture of the system prototype and basic
interactions

execution of the application and the enforcement of restrictions. The software archi-
tecture of our prototype, along with the mapping of the basic interactions between
the main system components in this architecture, is presented in Figure 7.7.

Management controller

The management controller is the core management entity of our system. It runs on
the cloud and is composed of a database/storage component and a set of distinct ser-
vices. The storage component internally employs a NoSQL mongoDB database [117]
to maintain (i) the application repository that includes the application executable im-
ages and descriptors, (ii) the drone repository with the descriptions for all the avail-
able drones, (iii) the restrictions repository that includes all the flight and sensor re-
strictions with their repair actions, and (iv) the deployment plans that are currently
running or have been scheduled to run at a later point in time. These repositories are
used by the different services of the management controller to perform the deploy-
ment checks. The services also implement the application deployment and drone
monitoring processes.

The management controller exposes a RESTful API, which can be used by a client to
create/submit an application deployment plan and retrieve the respective status up-
dates. The provided primitives are listed in Table 7.1. The drones that can be used to
deploy a given application are found through a matchmaking process, which com-
pares the flight, computing, networking and sensor requirements from the respec-
tive application descriptor, with the corresponding resources and capabilities of the
drones that are available.

Chapter 7. Flexible Deployment and Safe Operation of Drone Applications 62

TABLE 7.1: Client API of the management controller

| Primitive Description
/drones Get available drones.
/drones/ <int:id > Get drone info.
/apps Get available applications.
/apps/ <int:id> Get application info.
/apps/<int:id>/drones Get drones for this application.
/app_plan Create and submit plan.
/app_plan/ <int:id> Get, update, delete plan.
/app_status/ <int:id> Get application status.

The main management service is responsible for processing user requests and keep-
ing track of the overall system status. When a deployment plan is submitted, it com-
putes the flight area to be reserved based on the specified path/area and a safety
radius/zone depending on the physical characteristics of the drone. The area of
operation is then checked against the flight-restriction constraints that will be ac-
tive during the specified period of application execution. The application’s sensor
requirements are also checked against the sensor restrictions for the area and time
period of operation. The deployment plan is rejected if the sensors required by the
application are restricted for the entire area and period of operation. Note that ap-
proval does not imply that the application can use the drone’s sensors at any point
in time during execution since the approved flight path/area may still overlap with
areas where certain sensor restrictions apply.

If these checks are successful, the application deployment service is instructed to cre-
ate a Dockerfile and build the respective Docker image, which is compatible with the
computing resources of the selected drone and contains the application, the deploy-
ment plan and the related restrictions along with the respective corrective actions.
We chose Docker containers as they offer portability and isolation while remaining
lightweight is terms of image size and runtime resources. The image is then sent to
the target drone via the internal system APIL

Finally, the application monitoring service is responsible for monitoring the execu-
tion status of all deployed applications, and for reporting this information to the
main management service. It also sends to the drones updates regarding the re-
strictions/repair actions if these change during the execution of the application, e.g.,
in the presence of an emergency event. The interaction between the drone and the
application monitoring service occurs via the internal system API.

Drone environment

At the drone side, we have developed a prototype software environment that en-
ables the monitoring and restriction of the application’s behavior regarding the move-
ment of the drone and the utilization of the onboard sensor equipment.

Given that the majority of drones utilize ARM embedded devices as companion
boards, we opt for a Raspberry Pi 3 platform running the Linux-based Raspbian OS.
For the autopilot software, we use the ArduPilot autopilot [7], which has been ported
to many commercial and open-source hardware platforms and supports a variety of
aerial vehicles ranging from fixed-wing to multicopters. Following what is common
practice in the ArduPilot community, we use the PREEMPT_RT kernel patch [104],

Chapter 7. Flexible Deployment and Safe Operation of Drone Applications 63

which supports real-time scheduling of the autopilot software with minimal laten-
cies.

We consider applications that perform navigation operations, access sensors and
issue actuation commands via the autopilot subsystem using MAVLink [112] mes-
sages. This covers a wide variety of applications built on top of the low-level C and
python (pymavlink) MAVLink libraries, or higher-level APIs like MAVSDK [115],
DroneKit [38] and ROS [149] using the MAVROS communication node. The commu-
nication between the application and the autopilot is done through MAVProxy [113],
which supports multiplexing of the MAVLink protocol for multiple clients.

The management agent instantiates the application environment using the Docker
image it receives from the management controller. During execution, it keeps track
of and if needed enforces the respective deployment plan, which specifies the ge-
ofence/allowed area of operation, along with all the constraints for the relevant ar-
eas and the respective corrective actions. When the application terminates, the man-
agement agent performs all the necessary clean-ups, so that the next application can
be deployed from a clean state.

To achieve the desired monitoring functionality, we have extended MAVProxy with
an extra module that intercepts all the commands coming from the application and
checks them before forwarding them to the ArduPilot subsystem. If a command
violates one of the restrictions, the monitor takes the repair action defined for this
type of violation in the deployment plan. If the application needs to be aborted,
all its commands are blocked /ignored, and the application is forcefully terminated
by stopping the container. Moreover, the monitor blocks a number of additional
MAVLink commands, such as attempts to change the navigation mode, so as to en-
sure that the application runs only in the permitted, guided mode.

7.5.2 Simulation and Digital Twin

The design of the simulation framework is based on and extends AeroLoop [81], the
simulation environment we presented in chapter 2, section 2.3. The v-Controller and
the v-drone in the SITL and DT/SITL configurations are packaged as separate virtu-
alized systems. Instead of virtual machines (VMs) used in the vanilla AeroLoop
system, in this case, we use Linux Containers (LXDs) [110]. LXDs offer a good
compromise between isolation and resource efficiency, as they provide operating
system-level virtualization, which is more lightweight than full-fledged VMs, while
offering a more complete virtual system (closer to a real drone) than Docker con-
tainers that share the same networking/storage stacks. For the HITL configuration
of the v-drone, we support the Raspberry Pi 3 platform, which is the most popular
companion board used in real drones.

The Test Orchestrator and Results Analyzer are implemented as Python libraries.
The test scenarios are Python scripts that simply invoke these libraries. The agents
are also implemented as Python programs, running as standalone processes with the
respective interface being invoked via RPCs through the zerorpc library [128]. For
logging, we utilize the standard Python logging facility, and event logs are processed
by the Results Analyzer using standard Unix tools.

The Test Orchestrator creates and configures all simulation entities through the re-
spective agents. It is also responsible for performing all the network configura-
tion to enable the communication between the entities involved in a given test.

Chapter 7. Flexible Deployment and Safe Operation of Drone Applications 64

In simulation-based configurations, wireless networking is implemented using ns-
3 [147]. For Wi-Fi channels, each simulated ns-3 node, called ghost node, utilizes the
ns-3 TapBridge device, which is connected to each v-drone through a combination
of network bridges and virtual network devices (see [81]). We also provide support
for simulated LTE interfaces. This is achieved by introducing a high-bandwidth,
low-latency CSMA link between a ghost node and the simulated LTE’s UE node
(see [132]). Finally, the v-drone agents continuously update the position of the re-
spective ns-3 ghost nodes through a publish/subscribe scheme that is implemented
using the ZeroMQ library [180]. In the DT/SITL configuration, the Test Orchestrator
instructs the agents of the real and the v-drone to setup the physical connection that
will be used to transfer the required information from the real drone to its digital
twin.

Inside v-drones, the application is executed as a Docker container (this is how appli-
cations are packaged in the PaaS system). To this end, for v-drones running as LXDs
we exploit the nested container functionality. Applications may perform different
navigation operations, access sensors and issue actuation commands via the autopi-
lot subsystem, using the MAVLink messaging protocol [112]. Various APIs offer
MAVLink support, from low-level C and python (pymavlink) libraries to higher-
level ones like DroneKit [38] and ROS [149] through the MAVROS communication
node.

The autopilot used in v-drones is the latest stable version of ArduPilot [7], which
is one of the most widely adopted autopilot stacks supporting a wide variety of
aerial vehicles. In the HITL and SITL configurations, we use the pre-built binaries
for the ARM and x86_64 architectures, respectively. The autopilot proxy in the hy-
brid HITL/SITL v-drone configuration is implemented using the MAVProxy [113]
multiplexing tool, which forwards all messages of the Drone Runtime to the remote
autopilot (running in SITL), and vice versa. Note that any autopilot that supports
MAVLink and provides support for HITL or SITL simulation, such as PX4, could be
easily integrated in our framework. The replay engine used in the DT/SITL con-
figuration is implemented as a Python module, while the autopilot mockup utilizes
the pymavlink library for receiving and sending MAVLink messages. The runtime
inspection functionality is provided through standard system-level monitoring tools
at two layers; at the digital twin (v-drone) to check resource utilization of the whole
application container, e.g., using the docker stats command, and at the application
layer to check the CPU/memory usage of specific processes, e.g., using top.

As mentioned in Section 7.4, the autopilot of a v-drone can be configured to use an
integrated flight dynamics model or be connected with an external, higher fidelity
simulator. ArduPilot has built-in support for the former option, while for the latter
option we currently support Gazebo [77] through the corresponding plugin. Note
that any other simulator that supports ArduPilot (e.g., AirSim [159]) could be used
instead.

Finally, the simulation environment provides two options for simulated camera sup-
port to the application. When running the autopilot together with Gazebo, the ROS
camera plugin can be utilized to publish the virtual camera stream of Gazebo to a
ROS topic. Alternatively, we provide a custom virtual camera module for taking
snapshots, which mimics the API of the Raspberry Pi camera module and returns
images automatically extracted from a pre-configured database (see [81]).

Chapter 7. Flexible Deployment and Safe Operation of Drone Applications 65

7.6 Evaluation

The objective of our evaluation is to illustrate the main aspects of the functionality
provided by both the platform as a service system for controlled application execu-
tion and the integrated testing support. To this end, we use indicative testing sce-
narios for the simulation environment and the digital twin configuration and focus
on verifying the monitoring functionality and the enforcement of corrective actions
in the presence of violations.

7.6.1 Offline simulation experiments

Setup. Listing 5 shows the setup sequence for an offline test using a v-drone and
a v-Controller that communicate via Wi-Fi. In a nutshell the steps are to: (i) create
a v-Controller entity (line 1); (ii) instantiate a v-drone with identifier “vDrone-1",
which is set in SITL mode using the ArduPilot autopilot and Gazebo as the flight
dynamics simulator, with system resources (in memory and disk) as indicated in
a configuration file (lines 2-5); (iii) set the drone’s camera source from gazebo that
returns satellite imagery from a static map plugin (line 6); (iv) set a waypoint ap-
plication as a pre-installed application at the v-drone (as opposed to deploying it
dynamically via the v-Controller) and specify its parameters (takeoff altitude and
waypoints) (lines 7-8); (v) set the approved flight plan, which also specifies restric-
tions and the respective corrective actions (line 9); (vi) set the start location / home
position of the v-drone (line 10); (vii) create a Wi-Fi network (lines 11-12); (viii) ac-
tivate logging at all available levels (lines 13-14); and (ix) start the application (line
15).

Listing 5 Setup and start offline test

1 controller = vController()

2 drone = vDrone("vDrone-1", SITL,

3 autopilot=Ardupilot,

4 fdm=gazebo,

5 setup=config.min_resources)
6 drone.set_camera(gazebo-satellite)

7 drone.set_app("waypoint_app",

8 params=config.app_params)

9 drone.set_plan(config.flight_plan)

10 drone.set_pos(config.home_pos)

11 network = NetSim(config.net_wifi)

12 network.add_participants(controller, drone)
13 drone.set_logs(app, runtime, autopilot)

14 controller.set_logs(runtime)

15 drone.start_app()

Scenario. The test application, implemented with DroneKit, issues a sequence of
waypoint-based navigation commands. The next command is issued once the pre-
vious target location has been reached or a timeout has expired. In parallel, the
application can perform sensing by instructing the camera sensor to capture still
images. Figure 7.8 depicts the test scenario in the city of Volos. The green way-
points (WP1, WP2, WP3, WP4), placed at the four roundabouts near the port of
the city, indicate the locations that are specified by the user as part of the deploy-
ment plan. These define the path that the application is expected to follow, i.e.,
WP1—WP2—WP3—WP4. The light green shaded area indicates the (geofenced)
area of operation where the drone is allowed to fly. This is generated by the sys-
tem automatically based on the physical characteristics of the drone that runs the

Chapter 7. Flexible Deployment and Safe Operation of Drone Applications 66

WP-C1 WP-E1
o
o i 4 WP-C2
WP2 —=Y ¢ — —
WwP1 T =74 fii} WP4
wp3 —_
WP-E2
' user-provided waypoints geofenced area no-fly zone
Q extra application waypoints = course without monitoring no-photo zone
@ monitor's corrective waypoints == course with monitoring abort location

FIGURE 7.8: Simulation experiment with the monitoring mechanism
disabled (red line) vs enabled (blue line)

application. In this case, a safety perimeter of a few meters is applied along the
straight-line segments connecting the waypoints of the deployment plan. The dark
purple shaded triangle (over the city hall) indicates a zone where flying is strictly
prohibited. The light-yellow region indicates a zone where the usage of a camera
is not permitted. The yellow pin, placed at the same location as WP4, denotes the
target location in case the application is aborted.

Flight restrictions. To verify the functionality of our system, the test application is
programmed to deviate from the course declared in the deployment plan. The way-
points of the extra navigation commands that are issued at runtime are marked in
Figure 7.8 with the red waypoints (WP-E1, WP-E2, WP-E3). Thus, the actual course
that is followed by the application when our monitoring mechanism is disabled is
WP1—WP2—WP-E1-WP3—WP-E2—WP-E3—WP4, depicted by the red line.

The blue line in Figure 7.8 shows the result for the same test scenario with our mon-
itoring mechanism enabled. Namely, when the application issues navigation com-
mands to the locations WP-E1 and WP-E2, which are outside of the expected area
of operation, these commands are corrected so that the drone remains within the
allowed flight path. More specifically, the monitor instructs the drone to move to-
wards the intersection of the path it would have followed based on the application’s
request and the borders of the geofenced area (WP-C1 and WP-C2, respectively).
Later on, when the application targets location WP-E3, which is not only outside
the expected area of operation but also inside a no-fly zone, it performs a major vi-
olation. Consequently, the monitor decides to stop the application and instructs the
drone to move to the specified abort location (WP4) for landing. Thus, the resulting
course is WP1—-+WP2—-WP-C1 -WP3—WP-C2—WP4.

Camera sensor restrictions. To verify the enforcement of sensor-related restrictions,
we run the test application with the correct waypoints, i.e., those specified in the
deployment plan. In addition, the application is programmed to take photos peri-
odically, every 4 seconds, while the drone is moving between WP2 and WP4. As it
can be seen in Figure 7.8, this course trespasses the no-photo zone. Again, we run
two test scenarios, with our monitoring mechanism disabled and enabled, respec-
tively. Figure 7.9 shows the sequence of images produced in the former scenario.
The images that are crossed-out (entire second row and the first image in the third
row) are taken by the application while flying above the no-photo zone. These im-
ages are automatically suppressed by the monitoring module when our mechanism

Chapter 7. Flexible Deployment and Safe Operation of Drone Applications 67

FIGURE 7.9: Sequence of images captured by the application between
WP2 and WP4 (crossed out images are suppressed with monitoring
mechanism enabled)

is enabled and the application receives an error when trying to access the camera
while the drone is above these locations.

Results analysis. Apart from this kind of functional evaluation, there are also other
checks that can be performed during simulation execution or after its completion. In-
dicative examples are given in Listing 6. These checks can have the form of queries
or assertions. In the first case, specific data are returned, such as information re-
garding application violations, the size of data sent, or the average system resources
used by the application during execution (lines 1-3), in order to, e.g., compare them
by hand with the expected outcome in case of successful completion (line 4). In
the latter case, checks directly examine the application status or the existence of a
violation of a specific type (lines 5-6).

Listing 6 Analyze other test results

info = get_violations("vDrone-1")

data = get_data_sent("vDrone-1", level=app)

perf = get_app_resources("vDrone-1")
compare(perf, config.expected_perf)
check_app_status("vDrone-1", SUCCESS)
check_violations("vDrone-1", type='flight_path')

Ul R W N e

7.6.2 Runtime real-world testing

Setup. For the runtime checking using the digital twin configuration in the real-
world experiment, we use the custom-made hexacopter presented in chapter 2, sec-
tion 2.2, shown in Figure 7.10. Besides the autopilot board with the basic flight-
related sensors and actuators, the drone features a Raspberry Pi 3 onboard computer
with the Drone Runtime environment of the PaaS platform, which is used for the ap-
plication deployment and execution. The onboard computer is also used to run the
agent of the testing framework.

Listing 7 shows the script for setting up such a test. In a first step, an object repre-
senting the real drone is created and its configuration, i.e., application, parameters
and approved flight plan, is retrieved (lines 1-3). Then, a virtual drone is configured

Chapter 7. Flexible Deployment and Safe Operation of Drone Applications 68

FIGURE 7.10: Hexacopter used in the real-world experiment for the
runtime checking

in digital twin mode and is initialized using the application/flight plan configura-
tion of the real drone. Finally, the two entities are connected with each other in order
to enable the streaming of all the state-related data from the real drone to the digital
twin (line 7).

Listing 7 Setup and start online test

real_drone = realDrone('"drone-1")

test_config = real_drone.get_config(app, params, plan)

vdrone = vDrone("vDrone-1", DT)

vdrone.set_app(test_config.app,
params=test_config.params)

vdrone.set_plan(test_config.plan)

connect_drone_with_dt("drone-1", "vDrone-1")

N G R W N =

Scenario. The test application is a Python program that arms the drone, takes off
to WP1 (at a height of 10 meters), goes to waypoint WP2, next moves to waypoint
WP3, returns to initial location WP1 and lands. This is done by issuing correspond-
ing commands to the autopilot via DroneKit. Figure 7.11 depicts the test scenarios
performed in the open field.

Flight restrictions. To demonstrate the detection of unexpected deviations at run-
time, we modify the application that runs on the real drone so that it executes a
slightly different mission. More specifically, after reaching WP2, it issues a request
to navigate towards waypoint WP-R3, as shown in the dark green path depicted in
Figure 7.11. In contrast, the application running (correctly) on the digital twin re-
quests a movement to WP3 (as it should), which corresponds to the white line. This
deviation is detected and raises an alarm. The digital twin terminates at this point,
and it is up to the tester/operator to decide which action to take concerning the real
drone.

Results analysis. The API for comparing the behavior of the application running on
the real drone vs on its digital twin is straightforward, as shown in Listing 8.

During execution one may continuously compare the requests issued by the appli-
cation on the digital twin with those issued by the application on the real drone, or
simply list these requests in an explicit way (lines 1-3). Also, as long as the execution

Chapter 7. Flexible Deployment and Safe Operation of Drone Applications 69

deviation
detected

FIGURE 7.11: Runtime checking experiment

Listing 8 Check application behavior at runtime

vdrone . compare_app_requests ()
vdrone.list_app_requests(source=real)
vdrone.list_app_requests(source=dt)
vdrone.dt_exec("docker stats --no-stream")
vdrone.app_exec("top -b -d10 -n2 >top_results.txt")

TR @ N =

of the digital twin is identical to that of the real drone, one can inspect several appli-
cation performance aspects simply by querying the digital twin, e.g., by executing
commands to check the application’s container state, or even the detailed resource
usage of specific processes (lines 4-5).

70

Chapter 8

Orchestration of Distributed
Drone-Edge-Cloud Applications

8.1 Contributions and Outline

In this chapter, we present Fractus!, an orchestration framework for the automated
deployment and connectivity management of distributed, component-based appli-
cations across the entire system continuum, including drones, edge nodes and the
cloud. We view such a framework as an in important step towards next-generation
drone applications that have to incorporate data from various edge and cloud sources
and need to interact with the edge in an efficient, mission-aware fashion.

Our main contributions are the following:

e We present the design of a complete orchestration framework, which auto-
matically deploys and interconnects application components across the drone-
edge-cloud continuum.

* We introduce intuitive abstractions for describing the application’s placement
and communication requirements.

¢ Resource allocation and component deployment is requirements-aware, based
on the geographical area where the application will use the drone.

¢ Connectivity between application components is managed transparently, ex-
ploiting ad hoc local networking opportunities between drone and edge nodes
that host interacting components.

¢ Critical drone and edge functions, such as mobility and sensor operations, are
accessed by the application in a controlled way, through interfaces that offer se-
cure, safety- and privacy-preserving operations, driven by structured policies
that can be specified and updated by the relevant stakeholders in a flexible
way.

e We discuss a concrete implementation of Fractus, based on Kubernetes [94],
the most widely used container orchestration platform, which we extend in
several ways to achieve the desired functionality.

Fractus are small cloud fragments with irregular patterns, found under an ambient cloud base.
They change constantly, often forming and dissipating rapidly.

Chapter 8. Orchestration of Distributed Drone-Edge-Cloud Applications 71

e Through an extensive evaluation, we illustrate the provided functionality via
real field tests and a simulation environment, and we show that our imple-
mentation decreases the development effort and incurs an acceptable resource
footprint even for the constrained platforms found on drones and edge nodes.

The rest of the chapter is organized as follows. Section 8.2 motivates our work
and gives an application example through which we illustrate the concept of Frac-
tus. Section 8.3 introduces the concept and overall design of Fractus. Section 8.4
presents the descriptors Fractus uses internally for the representation of the various
resources, as well as the provided abstractions for the specification of the user re-
quirements. Section 8.5 focuses on the application deployment process. Section 8.6
describes the design of the network management functionality. Section 8.7 provides
more details regarding the policy-based service access to sensor and mobility re-
sources. Section 8.8 discusses the most important aspects of our implementation.
Finally, Section 8.9 presents the experiments performed to evaluate several aspects
of our prototype regarding the resource/performance overhead and the provided
functionality.

8.2 Motivation and Concept

Next-generation drone applications will not be just about navigating the drone and
collecting data via its onboard sensors. They will incorporate data from different
sources and will include heavyweight data processing that cannot be performed
solely by the drone. For instance, surveillance and monitoring applications may
combine aerial and ground-level image feeds and involve different image and big
data processing tasks. Also, last-mile delivery applications may need to run dif-
ferent signal and image processing jobs in order to land and/or place cargo in a
receptor with high accuracy. Even though it is possible to run some of the process-
ing tasks in the cloud, in some cases it can be more beneficial to offload them to the
edge, e.g., to minimize latency or reduce the amount of data transfers over metered
4/5G connections.

However, to achieve this flexibility one has to: (i) locate edge nodes in the drone’s
operational area capable of hosting the desired application components; (ii) schedule
application components on such nodes according to the application’s needs; (iii) es-
tablish direct connectivity between drone and edge nodes whenever it is deemed
beneficial. Currently, all these issues are tackled manually, targeting specific se-
tups, which makes application deployment inflexible in adapting to different en-
vironments or changing conditions. Our vision is to provide a framework where
the user only provides the application’s components and requirements, and all the
above issues are taken care of in a transparent way. This allows developers to focus
on the core application logic, while the application components can run unmodified
in different setups.

Take as a concrete example a road traffic monitoring application that uses both an
airborne camera on a drone and ground cameras on static edge nodes. The upper
part of Figure 8.1 shows an indicative component structure: the Navigator guides
the drone so that it follows the desired path along specific waypoints to provide the
required aerial coverage; the AerialViewer captures and filters the images of the drone
camera, while the GroundViewer performs a similar operation for a static camera on
an edge node; the ImageChecker is responsible for the core image processing part of
the application; finally, the results are forwarded to the DataStore that saves them

Chapter 8. Orchestration of Distributed Drone-Edge-Cloud Applications 72

Application Structure

(Navigator h DataStore
P: drone P: cloud
C: driver R: disk
S: mobility 1
wpl,wp2

(" AerialViewer) ImageChecker GroundViewer
P: drone .| P:hybrid P: edge
C: passenger H: max(in-bw) S:camera
_S:camera R: GPU

FIGURE 8.1: Application structure and indicative deployment based
on the requirements of each component

in persistent storage, from where they can be made available to other applications.
The lower part of Figure 8.1 shows the system infrastructure. Note that the drone
and edge nodes have ad hoc wireless networking interfaces. In addition, the drone
is assumed to have stable 4/5G Internet connectivity, whereas all edge nodes have a
wired connection to the Internet.

What Fractus proposes is that the deployment is driven by placement (P), class (C),
heuristic (H), service (S) and resource (R) specifications that accompany the code
of each component (see Section 8.4.3). The arrows directed from the application
structure in Figure 8.1 to the nodes of the system infrastructure illustrate such an
indicative deployment. More specifically, the Navigator and AerialViewer run on a
drone where they access the mobility and camera service, respectively. The Ground-
Viewer is instantiated multiple times on camera-equipped edge nodes at specified
locations of interest. The ImageChecker is instantiated multiple times on nodes that
have GPU computing resources. Apart from creating a base instance in the cloud,
additional instances of the ImageChecker may be hosted on edge nodes along the path
of the drone, which can interact with the AerialViewer component in a direct way via
WiFi instead of using a 4/5G Internet connection. In a similar vein, additional Im-
ageChecker instances may be placed on edge nodes hosting or being close to Ground-
Viewer components. During application execution, the selection of the actively in-
teracting instance of ImageChecker component instance that actually communicates
with the AerialViewer and the GroundViewer components is based on the heuristic
targeting the maximization of the bandwidth for ingress traffic, as specified by the
application. Finally, the DataStore component is placed in a cloud node with ample
storage.

To make such a model of operation attractive, we follow the cloud’s paradigm and

Chapter 8. Orchestration of Distributed Drone-Edge-Cloud Applications 73

embrace multitenancy to improve resource usage and lower costs of operation. How-
ever, even though the efficient sharing of computing resources like CPU and mem-
ory can be achieved using well-known virtualization and resource-limiting prac-
tices, the multitenant usage of drones along with their sensors in the edge is more
complicated as applications from different users may have different access rights to
sensor data and to the drone’s mobility. To this end, Fractus regulates access to such
critical resources through the combination of the specified application requirements
and external safety and privacy restrictions provided by the relevant stakeholders.
Also, the resulting fine-grained access rights are enforced in a hard way by the sys-
tem itself, without depending on the goodwill or skills of the application developer.

To continue the above example, assume a different application for monitoring the air
pollution due to car traffic, which includes a GasMeasure component for measuring
gas emissions at both the air and the road level and a GasStore cloud component for
storing the measured concentration of these gases. In this case, Fractus may deploy
the GasMeasure component on the drone and the edge nodes that are already being
used by the road traffic monitoring application, providing access to the CO/CO2
on-board sensors. In the same spirit, the component of yet another application that
analyses the movement of pedestrians can be deployed on the same drone/edge
nodes too and be given access to the on-board cameras being used by the Aeri-
alViewer / GroundViewer components of the road traffic application. However, for
these components, the system might activate (possibly different) privacy-preserving
policies for the images retrieved or even block image retrieval in certain areas. In ad-
dition, Fractus can restrict the Navigator component of the road traffic application so
that it cannot direct the drone into a no-fly zone or descent below a certain altitude.

8.3 Fractus Overview

Fractus is designed to support the orchestrated deployment and interconnection of
next-generation drone applications that seamlessly integrate drone-edge-cloud re-
sources while ensuring safety and privacy.

In particular, the main design goals are to build a system that can enable (i) the auto-
mated resource discovery-allocation and application scheduling based on specified
deployment needs, (ii) the efficient management of networking resources, leverag-
ing ad hoc networking technologies to support direct device-to-device communica-
tion between components running on drones and edge nodes, and (iii) the controlled
access of sensor, actuator and mobility resources on drones and edge nodes through
proper service interfaces and policies.

To achieve the desired flexibility, Fractus focuses on applications that adopt a mi-
croservice approach, consisting of a collection of relatively small, independently
deployable and loosely coupled software entities (microservices) that communicate
with each other through well-defined interfaces. The individual application compo-
nents are packaged as separate containers, providing isolation and resource limiting
in an efficient and lightweight manner, which is important for the resource con-
strained computing platforms of drones and low-cost edge nodes.

Figure 8.2 shows the main entities of Fractus, along with an indicative deployment of
the road traffic and pollution monitoring applications discussed in Section 8.2. The
user submits, through an API server, a structured description for the application,
and Fractus takes care of the necessary component deployment and networking. As

Chapter 8. Orchestration of Distributed Drone-Edge-Cloud Applications 74

Fractus control plane ('r\j %g Cloud node

===y image — |
— Check || Da‘taStwe‘ GasStore

SEHON API
description | Server Container Runtime |
Scheduler Controller : ;

|

Fractus
Agent

:

g (Q "
_\f'r?s Drone node fee - Edge sensor/compute node
(] [

Ima. Ground Gas H‘* RIS
.gmg;gr I Viewer | Measure I g Edge compute node
Coniiolied aepdeay| | Fractus Container Runtime
Access Agent Fractus

Aerial Gas
| flavigator Viewer | Measure
| Container Runtime

Controlled Service | |Fractus
Access Agent

FIGURE 8.2: Fractus architecture and indicative deployment

can be seen in the figure, the components of a single application are distributed in
the drone-edge-cloud continuum, and a single drone, edge or cloud node can host
components from different applications.

In the following sections, we discuss the key aspects of Fractus. We focus mainly
on the drone- and edge-related deployment and networking aspects. Also, we do
not discuss the algorithmic parts of the implementation in great detail; we note,
however, that the respective code is in the form of plug-ins that can be replaced with
more optimized versions, if desired.

8.4 Resource Descriptions

To achieve the desired functionality in an automated way, several pieces of informa-
tion regarding the available system resources must be explicitly captured and main-
tained up to date in an efficient manner. Also, the application description submitted
by the user must specify in a clear and intuitive way the respective requirements for
each application component.

8.4.1 Node descriptions

For each drone and edge node, the Fractus Repository keeps record of both its static
properties and the dynamic operation parameters. Listing 9 and Listing 10 pro-
vide snippets of the descriptions for a drone and an edge node, respectively. Static
properties include physical features (e.g., size and weight of drones, the location of
edge nodes), the sensing and mobility resources offered to the application through
corresponding services (see Section 8.7), service-specific capabilities (e.g., maximum
speed and flight time, for mobility) and the available ad hoc networking interfaces
with the pairing information needed to establish communication links with other
nodes.

Chapter 8. Orchestration of Distributed Drone-Edge-Cloud Applications 75

Dynamic parameters include the available computing resources (e.g., CPU, memory,
storage). In addition, for drones, the descriptions include status information (inac-
tive, charging, taking-off, flying, landing), battery characteristics (used to estimate
the remaining flight time) and current position. Further, the Repository includes in-
formation about the location of depot stations where drones are kept when not in
use or when they need to charge their batteries.

Listing 9 Drone description

type: drone

name: drone-1

mobilityType: quadcopter

class: CO

drone static parameters

physicalFeatures:

dimensions: {height: 100, length: 60, width: 50}
mtom: 1230 # mazimum takeoff mass, in grams
networkResources:

O N U W N e

- interface: 4G
- interface: WiFi
pairingInfo: {mode: adhoc, networkId: fractus-adhoc-1}

[S
W N = o

systemServices:
mobility:
autopilot: ardupilot
maxAltitude: 80 # in metres
maxFlightTime: 15 # <n minutes
maxSpeed: 15 # in m/s
methods: [Arm, Takeoff, Goto, GetPosition, Hover,
SetSpeed, GetSpeed, ReturnToLaunch, Land]
drone dynamic parameters
status: flying
location: [lat, lon, alt]
battery: {current: 28.9, remaining level: 82, voltage: 10.25}

I R e
B W N =R O NN Ul e

Listing 10 Edge node description
type: edge

name: edge-1

location: [lat, lon, alt]
networkResources:

- interface: Ethernet

- interface: WiFi

pairingInfo: {mode: adhoc, networkId: fractus-adhoc-2}
systemServices:

camera:

10 model: RPi Camera v2

11 resolution: 3280x2464

12 sensorType: RGB

13 methods: [CaptureImage, RetrieveImage, ListImages]

O ® N U o W N e

During a node’s registration with the Fractus system, the respective Agent submits
the node description to the Repository. At runtime, the Agent updates the values of
dynamic parameters in response to requests of the Fractus Controller or periodically
during application execution.

8.4.2 Policy descriptions

In a similar manner, the Fractus Repository stores so-called access policies. These
can be submitted by relevant authorities (e.g., civil aviation, municipalities) and

Chapter 8. Orchestration of Distributed Drone-Edge-Cloud Applications 76

drone/edge node providers, to regulate the degree to which applications can ac-
cess a given sensing/mobility resource through the corresponding service, as well
as to filter the replies returned from the service. A policy can optionally have a se-
lector expression specifying the areas, nodes and applications for which the policy
holds.

The currently supported access policies are summarized in Table 8.1, while Listing 11
presents some indicative examples. An AccessControl policy (line 1) acts as an autho-
rization mechanism granting or forbidding access to specific service calls. LimitCon-
trol policies (lines 6 and 12) are used to set upper and/or lower limits to different
quantities related to the mobility service of a drone, such as speed and flying alti-
tude, while GeofeniceControl (line 20) determines how to handle application requests
to move in an unauthorized area or move out of an authorized area. The supported
actions vary from completely ignoring the request, to adjusting the request within
the allowed bounds, to more radical measures like forcing an immediate landing.
Finally, a PrivacyControl policy can be used to control how privacy is preserved with
respect to a specific sensor. More concretely, in the case of a camera, this concerns
the captured images, which can be altered in order to return a black image to the
application, blur the whole image, detect and blur faces in the image, or remove the
background.

Listing 11 Policy descriptions

1 - type: AccessControl # method access

2 kind: denial # forbid access

3 methods: [CaptureImage, RetrievelImagel

4 selector: # for all drones/edge modes in a given area
5 area: regionl

6 - type: LimitControl # speed limit

7 kind: speed

8 upperLimit: 10.0

9 action: enforce # adopt bound

10 selector: # for all drones flying above a certain area
11 area: region2

12 - type: LimitControl # altitude limits

13 kind: altitude

14 upperLimit: 50.0

15 lowerLimit: 5.0

16 action: enforce # adopt corresponding bound

17 selector: # for a given area and certain drone classes
18 area: region2

19 drone: { key: class, operator: In, values: [C2, C3]}
20 - type: GeofenceControl # mobility limits

21 kind: exclusion # prevent from entering

22 action: land # take over and land the drone

23 selector: # for drones exceeding a specific weight

24 area: region3

25 drone: { key: mtom, operator: Gt, value: 2000}

26 - type: PrivacyControl # for semsors

27 kind: camera # for the camera

28 action: blurFaces # use suitable filter

29 selector: # for all drones/edge nodes in a given area
30 area: region3

8.4.3 Application and component descriptions

Application descriptions specify for each component the desired placement, the re-
quired resources/services related with static features and dynamic parameters, and

Chapter 8. Orchestration of Distributed Drone-Edge-Cloud Applications 77

TABLE 8.1: Generic and resource-specific service policies

| Policy | Description \

] GENERIC \

| AccessControl [grant/forbid access to service call(s) |

] MOBILITY \
LimitControl restrict speed and altitude values
GeofenceControl | correct a spatial violation

] CAMERA \

| PrivacyControl | filter image retrieval \

the ingress/egress interactions with other components. Next, we focus on the parts
that drive the most important functionality of Fractus for the drone and edge nodes.
As a tangible example, Listing 12 provides snippets of the component descriptions
accompanying the application discussed in Section 8.2.

The basic component placement options are “drone” as for the Navigator and Aeri-
alViewer, “static edge” as for the GroundViewer, “hybrid edge-cloud” as for the Im-
ageChecker meaning that multiple instances can be deployed on different edge nodes
and the cloud, or “cloud” as for the DataStore (not shown in the listing). More spe-
cialized information needs to be provided depending on the placement option. For
instance, cloud components can specify the desired number of replicas, hybrid com-
ponents have to specify the heuristic for selecting the currently active instance (dis-
cussed below), while edge components may have specific location requirements.
Drone and edge components need to specify the mobility and sensing service prim-
itives they will invoke at runtime.

Drone components declare the required degree of mobility /navigation control on
the drone, by classifying themselves as a “driver” or “passenger”. A driver com-
ponent may request full control for the entire flight procedure or partial control at
specific locations. Respectively, it may specify a single control point as the start lo-
cation (which can also be left open) or several ones where it needs to take over. Each
control point specifies the type of navigation that will be used, which can be a path
defined via a sequence of waypoints, or a region defined as a bounding polygon. For
instance, the Navigator component of the traffic monitoring application is a driver
that requires full control and applies path-based navigation. In contrast, passenger
components (Aerial Viewer) take advantage of a driver and can use the drone’s sensor
services without having to perform any explicit navigation/mobility operations.

If the application does not have a driver, one of the passenger components has to
specify the points of interest to be visited by the drone, whether these points need
to be visited in a given order (thereby constituting a path) and whether access to the
drone’s services is required only at these points or throughput the specified path, as
shown in Listing 13. All other passenger components (if any) implicitly inherit this
specification. Fractus will then try to find a suitable driver that can accommodate
these passengers (see Section 8.5). Notably, Fractus assumes that drones have obsta-
cle avoidance capability as part of the basic autopilot stack and does not deal with
such low-level issues.

A static edge component (GroundViewer) explicitly declares the areas of deployment
(center location and radius) and the required number of instances for each of them

Chapter 8. Orchestration of Distributed Drone-Edge-Cloud Applications 78

Listing 12 Simplified description of the traffic monitoring application

1 - component: Navigator # drone driver

2 placement: drone

3 class: driver

4 services:

5 - service: mobility

6 methods: [Arm, Takeoff, Goto, SetSpeed, Land]
7 control: full

8 controlPoints:

9 - point: homeLocation

10 navigation: pathBased

11 path: [wpl, wp2, ...]

12 - component: AerialViewer # drone passenger
13 placement: drone

14 class: passenger

15 services:

16 - service: camera

17 methods: [CaptureImage, RetrievelImage]
18 egress: [ImageChecker]

19 - component: GroundViewer # static edge

20 placement: edge

21 locations: [{locl, radiusi, 1}, {loc2, radius2, "*"}]
22 services:

23 - service: camera

24 methods: [CaptureImage, RetrievelImage]
25 egress: [ImageChecker]

26 - component: ImageChecker # hybrid cloud-edge
27 placement: hybrid

28 heuristic:

29 kind: max

30 metric: ingress-bandwidth

31 resources: [GPU]

32 ingress: [AerialViewer, GroundViewer]
33 egress: [DataStorel

34 hybridTo: [AerialViewer, GroundViewer]
35 - component: DataStore # cloud component
36 placement: cloud

37 replicas: 3

38 ingress: [ImageChecker]

(* stands for “as many as possible”). Once an instance of a static component is de-
ployed on a node, it remains there in an active state during the entire lifetime of the
application.

Hybrid cloud-edge components (ImageChecker) are instantiated at least once in the
cloud. Furthermore, additional instances can be created as close as possible to a sub-
set of the interacting (ingress and egress) drone/edge components, specified by the
“hybridTo” directive, to maximize direct communication opportunities (e.g., over
WiFi). Thus, the placement of the extra instances is determined by the operation
area of the drone and the location of the edge nodes hosting the static components,
respectively. A different instance of a hybrid component may be created for each in-
stance of a static edge interacting component (GroundViewer). Moreovert, for drone-
based interacting components (Aerial Viewer), multiple instances of a hybrid compo-
nent can be deployed on several edge nodes to achieve good coverage that maxi-
mizes direct communication opportunities. During application execution, Fractus
transparently directs application traffic to or from only one so-called target hybrid

Chapter 8. Orchestration of Distributed Drone-Edge-Cloud Applications 79

Listing 13 Description of passenger component with navigation information

component: AerialViewer
placement: drone

class: passenger
services:

methods: [CaptureImage, RetrievelImage]
egress: [ImageChecker]
pointsOfInterest:
points: [wp2.1, wp2.2, wp2.3]
10 ordered: yes # visit in the order listed (path)
11 serviceAccess: path # for the entire path

1
2
3
4
5 - service: camera
6
7
8
9

% S -
Fractus - Fractus Fractus Fractus Fractus
Usar Controller Repository Scheduler Agent Agent Agent
App Desc >
-+
— b z —
Determine status updates
operation

area
———— nodes &
Find policies
[>
Candidates

deploy application

>

= 5 Host
ctatus | Selection

checks

network/policy configuration
—»

deploy component(s)
—

FIGURE 8.3: Sequence of application deployment

instance at any point in time (see Section 8.6). The selection is based on correspond-
ing declarations in the application description. In the current prototype, the appli-
cation may opt for maximum bandwidth or minimum latency for ingress and/or
egress flows, or always prefer direct links vs communication over 4/5G Internet
connections. Fractus also provides suitable hooks so that new heuristics can be eas-
ily integrated as plugins into the platform. To eliminate the need for state migration
we currently consider stateless hybrid components, which is a common practice in
microservice architectures.

8.5 Application Deployment

When an application description is submitted, Fractus performs several steps to de-
ploy its components in the drone-edge-cloud continuum, illustrated in Figure 8.3.
Next, we discuss the deployment process in more detail, focusing on the key aspects
that concern deployment on the drone and edge nodes. More specifically, we discuss
how Fractus (i) establishes the area where the drone will be used by the application
(Algorithm 5), (ii) uses this information to find candidates for hosting the applica-
tion’s drone, static edge and hybrid cloud-edge components (Algorithms 6, 7, 8),
(iii) selects the specific hosts where each component instance will be deployed (Al-
gorithms 9,10).

Chapter 8. Orchestration of Distributed Drone-Edge-Cloud Applications 80

Algorithm 5 Calculation of drone operation area

Input: app > application components descriptions
Output: area, poi > drone area(s) of operation, passenger Pol

1 area, poi < 0,0
if app.driver # NULL then > area based on driver navigation info
for each ctrlp € app.driver.ctrlPoints do
area <— area U calcArea(ctrlp.navigationInfo)
end for
else > area based on passenger points of interest
psgr < (¢ € app.passengerComponents A c.poi #)
area < calcArea(pasgr.poi)
poi < psgr.poi
: end if

SO XN TN

—_

Area of drone operation. If the application has a driver, the area of operation is cal-
culated using the navigation information (path or a wider region) for each declared
control point. Else, if the application only has passenger components, the area of
operation results from the respective points of interest.

Algorithm 6 Find candidates for hosting the drone components

Input: app, poi
Output: cand .4,

1: if app.driver # NULL then > find unused drones
2. startPoint < first(app.driver.ctrlPoints).start

3: if app.driver.control = full then > drones at specific depot
4: cand <— dronesInDepotAt(startPoint)

5: else > drones at nearby depots
6: cand < dronesInDepotCloseTo(startPoint)

7 end if

8: else > find suitable used drones and nearby unused drones
9: cand"*? « dronesUsedVistingSame poi)

10: cand'¥¢ < dronesInDepotCloseTo(first(poi))
11: cand < cand">*® U cand™le

12: end if

13: cand gy, < sortByStatusAndFlightTime(cand)

Host candidates for drone components. If the application includes a driver com-
ponent with full navigation control, the drones considered as candidates are those
found in depot stations at the specified start location. If the driver does not specify
the start point or requires partial control, candidate drones are the ones in depots
within a (configurable) radius from the first control point of the application driver.
In this case, Fractus provides a “chauffeur” (system driver component) that will fly
the drone from the depot to the first control point of the application driver as well
as between any other control points. The chauffeur by default follows the shortest
path, which is a straight line in the absence of obstacles.

If the application only has passengers, Fractus considers as candidates drones al-
ready allocated to other applications, provided the points of interest lie within the
driver’s specified path and are visited in the required sequence (if one is specified).
In addition, unused drones close to the path’s start are also considered as candi-
dates; in this case, similar to above, Fractus provides a chauffeur that will navigate
the drone through all points of interest, following the shortest path, as mentioned
above.

Chapter 8. Orchestration of Distributed Drone-Edge-Cloud Applications 81

Finally, the drone candidates are ranked according to their flight readiness level, en-
ergy level and estimated (remaining) flight time, in the spirit of [133] [21]. For appli-
cations without an own driver, an extra scoring rule is applied to give preference to
drones that are already used for other applications, instead of employing new ones
as this will lead to additional take-offs/landings and further loads the airspace.

Algorithm 7 Find candidates for hosting the static edge components

Input: app
Output: cand,g,

1: for each s € app.edgeComponents do

2 for each | € s.locations do

3 cand < nodesWithin(l.area)

4: candsgqy[s][l] < sortByDist(cand, l.center)
5 end for

6: end for

Host candidates for static edge components. Finding host candidates for each static
edge component of the application, is more straightforward. For each such compo-
nent and desired deployment location, all nodes within the corresponding area spec-
ified in the application description are considered as candidates. The candidates are
then sorted in increasing order of their distance to the center location of the specified
deployment area.

Algorithm 8 Find candidates for hosting the hybrid components at the edge

Input: app, area, cand g,

. edge drone
Output: candhyb”.d, Candhybrid

1: for each p € app.hybridComponents do

2 for each s € p.hybridToEdgeComponents do

3 for each | € s.locations do

4 for each 1 € cand,gg4,[s][l] do

5: cand <— nodesCloseTo(n.pos)

6 cund:ﬁiid[p] [s][1][n] < sortByDist(cand, n.pos)
7 end for

8 end for

9: end for
10: if p.hybridToDroneComponents # @ then
11: cand < nodesCloseTo(area)
12: cand%‘z’;fd [p] < sortByCoverage(cand, aren)
13: end if
14: end for

Host candidates for hybrid components. Apart from the cloud, there are additional
candidates for hosting the edge instances of a hybrid component. For each interact-
ing static edge component, the candidates for hosting the hybrid component are the
nodes close to each one of the candidates (including the candidates themselves) pre-
viously found for the static edge component and each of the specified deployment
locations. These candidates are then sorted based on their distance to the candi-
date hosts of the static edge component and their ability for direct communication
via a suitable wireless interface. Also, if the hybrid component interacts with some
drone component(s), the candidates for hosting the former are all edge nodes close
to the calculated area of drone operation. In this case, the candidates are ranked
in descending order of their coverage of the operation area through direct wireless
communication.

Chapter 8. Orchestration of Distributed Drone-Edge-Cloud Applications 82

Algorithm 9 Host selection for drone and static edge components

Input: app, cand gyope, candegge
Output Narones hedge

// select host for all drone components
: check(candj,on0) > availability & resources
: hdrone <~ Ca”ddrone [0}

N =

// select hosts(s) for each static edge component and location
: for each s € app.edgeComponents do
for each I € s.locations do
check(cand g [p][1]) > availability & resources
nofhosts < max(L.instances,len(candeqq.[p]l]))
hoggels1[1] = candgge [p)[1][i : nofhosts]
end for
end for

R N A

Host selection. Based on the candidates found through the previous location-based
filtering process, the Controller produces a deployment plan, which is passed to the
Fractus Scheduler. In turn, the Scheduler selects the hosts for placing the differ-
ent instances of the application components. This is done by checking the status
and resource availability of every candidate in the Repository (discarding those not
meeting the respective requirements), and then picking the best of the remaining
candidates.

Algorithm 10 Host selection for hybrid components at the edge

. edge drone
Input: app,area, candhyb”.d, candhybrid, hedge

edge drone
Output 1, i

1: for each p € app.hybridComponents do
2 for each s € p.hybridToEdgeComponents do
3 for each [€ s.locations do
4: for each 11 € hyyg,[s][!] do
5: check(cand g [p][!][n]) > availability & resources
d d
6 HrialP)Is)1 1] <= candy, 5. [p][s][1] [n] (0]
7 end for
8: end for
9: end for
10: if p.hybridToDroneComponents # @ then
11: hZ;‘;’y’fd[p] —Q
12: covered < @
13: check(cand%%’;fd [r]) > availability & resources
14: while €270 < MAX_COV A candfié,[p] # @ do
15: i+ getMaxCov(cundZ;‘;]’;fd[p],covered, area)
16: n 4 rmv(candiﬁ’r’fd[p] [i])
17: append(h%‘zﬁfd [p], n)
18: end while
19: end if
20: end for

The best drone candidate is picked to host all the application’s drone components.
For each static edge component, the number of selected hosts depends on the num-
ber of desired instances per specified deployment area and the number of suitable
candidates found for it, giving preference to the best candidates. For each hybrid
component that interacts with a static edge component, at most one host is picked for

Chapter 8. Orchestration of Distributed Drone-Edge-Cloud Applications 83

each instance of the static edge component (the best among the candidates found).
For each hybrid component interacting with drone components, multiple hosts are
selected in order to achieve good coverage of the drone’s operation area through
direct wireless communication. To this end, a greedy approach is employed, by iter-
atively picking the next candidate that maximizes the coverage until a (configurable)
percentage of the operation area is covered or there are no more candidates.

Component deployment. As a last step, the Scheduler deploys the instances of each
application component on the selected hosts. Note that the application can be func-
tional even if only the base cloud instance is created for a hybrid component even
though this may not be ideal from a scalability and /or communication perspective.
For instance, the traffic monitoring application could work with a single cloud Im-
ageChecker instance, which could be accessed by the AerialViewer on the drone and all
GroundViewer instances on camera-equipped edge nodes. But, of course, it would be
better to have multiple instances of the ImageChecker on/near each such edge node as
well as on nodes near the drone’s path to be able to achieve the specified deployment
requirements in the best possible way (see Figure 8.1).

8.6 Network and Application Flow Management

Drones, edge nodes and cloud nodes have a stable Internet-based communication
channel that is used for the system-level interactions with the cloud control plane.
For drones, this channel is maintained over cellular 4/5G, whereas edge and cloud
nodes employ a wired Ethernet connection. Application-level communication be-
tween hybrid components placed in the cloud and their interacting drone and static
edge components always takes place over this channel. In addition, at runtime, Frac-
tus exploits ad hoc wireless interfaces to form in the background local and possibly
ephemeral network links between edge nodes hosting instances of hybrid compo-
nents and the hosts (drones/edge nodes) of their interacting components. This is
done to examine alternative communication paths for interacting drone-hybrid and
edge-hybrid components and select the target instance of the hybrid component that
is optimal according to application requirements. The networking management is
carried out, transparently to the application, by the Fractus Controller and the net-
work proxy components that run on each node, as shown in Figure 8.4. Next, we
discuss the main design aspects.

Addressing. The routing of application-level traffic is done through virtual IP ad-
dresses (VIPs). Fractus assigns a VIP to each service-providing application com-
ponent that is accessed by other client components according to the ingress/egress
relationships in the application description. In case the same service component is
instantiated multiple times (e.g., ImageChecker), a single VIP is assigned to all in-
stances.

Direct communication links. At node startup, the Connectivity Manager on the
drone and edge nodes creates a separate Interface Controller for each networking
interface except the one used for the default communication channel. These Interface
Controllers are responsible for performing the technology-specific network creation,
discovery and connection operations needed to establish a direct IP connection at the
physical layer (besides WiFj, it is possible to include other technologies, e.g., BLE).

During the component deployment phase, the Scheduler sends to the Agents of the
respective nodes the network configuration information generated by the Fractus

Chapter 8. Orchestration of Distributed Drone-Edge-Cloud Applications 84

v
)

default communication channel

Drone =
A 4onre | = - Ko
/ Fractus Net-proxy \ 1 thernet —

/-— = = Aerial Fractus %‘ . Edge node
| Metrics Mapping Viewer —— Met-prox e
s r's v — (client)

= Cloud node

W I | Ethernet |__
v R | Image /- N
Connectivity | | Traffic | | [[VIP_|Checker Fractus
{ Manager Redirector \ |(5Ler]/ Net-pro
e) _ - Net-pro .
=B = |
, wiFi | *|LVIP_|Checker
\ Controller | Routing rules /-’ | M_/

| IO)J).......... o U e PR T)

FIGURE 8.4: Requirements-aware networking of interacting compo-
nents in the traffic monitoring application

Controller based on information stored in the Repository for each drone and edge
node. This configuration is stored in the local Mapping directory and essentially
consists of entries in the form <name, VIP, netlnfo>, where name is the unique identi-
fier of a component instance, VIP is the virtual IP address assigned to a server com-
ponent, and netlnfo is the required binding information for the ad hoc networking
technology to be used.

At application startup, when there are hybrid components interacting with a static
edge component (e.g., ImageChecker with GroundViewer), the Fractus Controller in-
structs the creation of the direct communication link between the edge node hosting
the static component and the closest edge node hosting an instance of the hybrid
component. Upon the reception of such a command, the Connectivity Manager on
the static edge component host retrieves from the Mapping directory the relative net-
Info and requests the respective Interface Controller to connect with the interacting
node. This connection persists throughout the application execution.

During application execution, when there are multiple edge nodes hosting instances
of a hybrid component that either provides a service (e.g., ImageChecker to Aeri-
alViewer), or invokes a service provided by a drone component, the Fractus Con-
troller instructs the net-proxy component of the drone to create a direct communi-
cation link with a specific edge node. In this case, the decision of the node is based
on the geographical proximity between the drone and the edge nodes, the specified
range of the ad hoc networking technology and other navigation-related parameters.
In path-based navigation, current drone position and speed combined with the next
waypoint are used to proactively select the next node. In region-based navigation,
the drone’s position, speed and direction can be used to estimate its trajectory and
select a new node accordingly. Upon the reception of such a command, the Connec-
tivity Manager requests the respective Interface Controller to leave the current local
network (if any) and initiate connection establishment to the newly selected one.

Target instance of hybrid component. The target instance for hybrid components
interacting with drone or static edge components is selected by the Fractus Con-
troller and can change dynamically during application execution. At application

Chapter 8. Orchestration of Distributed Drone-Edge-Cloud Applications 85

startup, the target is set to the base instance located in the cloud, whereas the in-
stances at edge nodes are in an inactive state, meaning that they neither create nor
receive any application traffic.

When a direct link is created, the Fractus Controller gets informed and depending
on the corresponding application requirements, it may decide to switch immedi-
ately the target instance or start specific performance measurements. More specifi-
cally, if the heuristic is to minimize communication costs, it means that direct links
are always favored over 4G/Internet communication; thus, the corresponding traffic
flows at the involved nodes are redirected without any further delay. Otherwise, the
Controller sends a request to the involved nodes to start running and reporting the
related metrics. This process is performed by the Metrics component, which may
need to measure the bandwidth of ingress and egress traffic, network latency and
link quality for the available communication paths. The Fractus Controller monitors
the received measurements and switches the target instance whenever deemed ben-
eficial. Note that for drones such a switch may also need to take place due to moving
away from the range of the edge node hosting the target instance, in which case the
base instance located in the cloud is selected until a better option arises.

Once a switching decision is made, the Connectivity Managers on the drone/edge
node and the node hosting the new target instance exchange routing information
regarding the interacting components to make the redirection in a coordinated way.
More specifically, the Traffic Redirector on the host of the server component changes
the local routing rules to enable ingress traffic through the selected communication
channel, whereas its counterpart at the host of the client component enables the
corresponding egress traffic through this channel. Then, the previous target instance
is set in an inactive state by blocking any incoming/outgoing interactions.

8.7 Access of Sensor and Mobility Services

Fractus exposes to the application the sensing and mobility capabilities of drone and
edge nodes in the form of node-local system services, which are accessed through
well-defined APIs. Our prototype supports two basic services: (i) the mobility ser-
vice for controlling the movement and navigation of the drone and (ii) the camera
service for recording and accessing images.

Table 8.2 lists the respective APIs. Note that the camera service provides sepa-
rate functions for capturing and retrieving images since both of them are relatively
time-consuming operations in typical computing platforms used in drones and edge
nodes and may not be needed to perform them concurrently (e.g., in case the images
are not processed immediately). Besides the methods for the mobility and camera
services, Fractus also provides the GetControl method for the application to block
until the next control point is reached (instead of constantly polling the drone’s lo-
cation), and the ReturnControl method for voluntarily releasing control once the
application has completed its task within a given control area.

Internally, Fractus handles service method invocations based on a so-called policy
configuration that is produced for each application and component. This configura-
tion consists of refined policies that are generated by the Controller based on the
component’s declared service usage, the calculated application operation area and
location requirements, the concrete candidate hosts and the relevant system policies
stored in the Repository (Section 8.4.2).

Chapter 8. Orchestration of Distributed Drone-Edge-Cloud Applications 86

TABLE 8.2: Basic system services API

| Method | Description \
GENERIC
GetControl block until next control point
ReturnControl explicitly return control
MOBILITY
Arm/Disarm arm/disarm drone’s motors
Takeoff/Land take off to an altitude/land
SetSpeed/GetSpeed | set/get speed
Goto move to specific location
Hover maintain position
GetPosition get current position
CAMERA
CaptureImage capture a still image
Retrievelmage retrieve an image
Repository

Application
policies Description
1) produce policy configuration

for Component A and ServiceX ServiceX
component: A ; . ' ' <
service: ServiceX 2) register policy|configuration .| Policy Cr::rre_r:tive
policy: policyX.cfg Cache Actions
r Y
/ 4) find policy 5) take action

L 3) request - - -
Component » Service » Policy » Policy

A < APl e Checker le Executor

6) reply

FIGURE 8.5: Policy-based service access

Taking the application example discussed in Section 8.2, the generated AccessCon-
trol policies for the Navigator component in Listing 12 concern the methods of the
mobility service, while for the AerialViewer and the GroundViewer they concern the
methods of the camera service. Also, for the Navigator and AerialViewer method ac-
cess is restricted to the operation area of the drone. Furthermore, GeofenceControl
policies are generated for the Navigator to restrict the location-related parameters of
the Goto mobility method within the operation area and to force a landing if the
application issues a call that attempts to enter a no-fly zone. In addition, the pa-
rameters of the SetSpeed and Goto methods of the mobility service can be further
restricted as to the flight speed and altitude, based on respective LimitControl poli-
cies for the operation area of the application or the specific type of drone used to run
the application. Finally, PrivacyControl policies that apply to certain areas may fur-
ther restrict the results returned by the Retrievelmage method of the camera service
to the AerialViewer and GroundViewer components.

The policy configurations generated by the Controller for the application’s com-
ponents are included in the deployment plan that is handed over to the Fractus
Scheduler. In turn, the Scheduler sends this information to the host Agents together
with the images of the application components to be instantiated there. The sys-
tem services on drones and edge nodes have a specific internal structure, which

Chapter 8. Orchestration of Distributed Drone-Edge-Cloud Applications 87

is used to handle the service invocations performed by the application at runtime,
as illustrated in Figure 8.5. In a nutshell, the policies for each application compo-
nent are extracted from its configuration (before the component starts running) and
are registered in a cache. Service requests are intercepted by the Policy Checker
which queries the cache for policies matching the current location context, the ser-
vice method and the component that performs the invocation. Depending on the
outcome, the Policy Checker may handle the request as usual, reject it, or apply a
corrective action. In the latter case, the request in forwarded to the Policy Executor,
which provides implementations for specific corrective actions, and the produced
reply is returned to the application component. Besides the service call-specific con-
tent, replies also carry status information describing the corrective action taken (if
any) so that the application can be aware of this and proceed accordingly if needed.
Finally, when a component stops its execution, all related policies are removed from
the cache.

8.8 Implementation

The Fractus prototype is based on the Kubernetes container orchestration platform.
We use k3s [71], a lightweight and fully conformant production-ready Kubernetes
distribution for edge environments, which we extend in various ways to provide the
required functionality.

The descriptions of drones, edge nodes, applications and policies are introduced
as custom resources [90] through Custom Resource Definitions (CRDs). The actual
instances are stored in the persistence store of the cluster as custom objects whose
lifecycle management (CRUD operations) takes place through the Kubernetes API
Server [88].

The Fractus Controller is implemented as a custom controller following the operator
pattern [93]: it registers to the API Server as event listener for new Fractus applica-
tion objects, on such events transforms the application description to corresponding
Kubernetes objects, submits these objects for deployment and monitors their exe-
cution. The location-based scoping of candidate nodes is performed by annotating
them with application- and component-specific labels. During the deployment plan
creation, each component instance is transformed to a pod, the smallest deployable
unit in Kubernetes, and its main deployment requirements are specified through
nodeSelector and nodeAffinity rules that use these labels. The Fractus Scheduler ex-
tends the filtering and scoring phases of the upstream Kubernetes scheduler and
is responsible for the binding of the application components (pods) to the selected
hosts. We use the default set of predicates for filtering, and the location-based exclu-
sion of candidate nodes is achieved via the built-in label-matching rules.

The Fractus Agent is a custom daemon, running in parallel with the node’s Kubelet.
At startup, it communicates with the API Server to register a new node object and
add Fractus-specific labels corresponding to its features and starts the system ser-
vices (mobility/camera). Then, during application execution, it informs Kubernetes
about resource availability and the current values of its dynamic properties by up-
dating the respective node object description in the persistence store through the
Kubernetes API. The camera and mobility services are implemented as gRPC ser-
vices using SSL/TLS authentication. Thus, for each component that accesses them
the Fractus Scheduler has to add the respective credentials to its pod.

Chapter 8. Orchestration of Distributed Drone-Edge-Cloud Applications 88

For the default communication channel, we employ the Flannel Container Network-
ing Interface plugin [48] which configures a layer 3 IPv4 overlay network between
all cluster nodes. The VIP address of service-providing components is mapped to
Kubernetes Service resources [96]. For each such Service, the Kubernetes network
proxy (kube-proxy) running at each node, uses the Linux kernel netfilter framework
and installs iptables rules to capture traffic to the service’s VIP/port and redirect it
as needed through the overlay network. During the selection of the target instance
of a hybrid component, the Fractus Controller uses Network Policies [92] that control
this traffic flow to isolate the other instances through suitable ingress/egress rules.

The Fractus Network proxy essentially expands the capabilities of the Kubernetes
network proxy and in our prototype focuses on exploiting WiFi. The WiFi Controller
supports discovery using both ad hoc and infrastructure modes. After the successful
pairing at the physical layer, if the Fractus Controller selects an edge node as target,
the Traffic Redirector (on both hosts) creates a mapping between the VIP, the address
in the Kubernetes overlay network of each local server application component and
a new IP address that is created for it in the direct IP network. Then, corresponding
iptables rules are inserted in the prerouting and postrouting chains of the NAT table,
capturing packets sent to the direct network IP addresses and changing their desti-
nation to the cluster-wide component addresses. Subsequently, this information is
exchanged between the two hosts so that the other side also inserts corresponding
iptables rules that capture egress traffic to each such virtual IP and redirect it to the
direct network.

8.9 Evaluation

Our evaluation seeks to answer the following three main questions:

¢ Is Fractus practical in terms of the overhead introduced to the resource-con-
strained drone/edge nodes?

¢ What are the tangible benefits regarding the policy-based access to resources
in a real-world setup?

¢ What are the gains of the requirements-aware deployment and network man-
agement?

To address these questions, we evaluate the various resource overheads of Fractus
using a hardware-based testbed comprising of typical drone and embedded edge
nodes hardware platforms. Then, we use these platforms to showcase part of the
provided drone-related functionality through field experimentation. Finally, we
demonstrate more of the provided functionality and related benefits using a sim-
ulated setup that also allows us to study the deployment overhead of our approach
at scale.

Both field and lab experiments, make use of the hardware testbed setup, shown
in Figure 8.6, which is based on the system presented in chapter 2, section 2.2. In
particular, the drone used is a custom-made hexacopter with a CUAV V5 nano au-
topilot board [168] running the ArduPilot autopilot software [7] (Copter 4.0). The
drone has as a companion board a Raspberry Pi 3 Model B [145] with a quad-core
ARM Cortex A53 processor (@1.2 GHz, 1GB RAM) running the Raspberry Pi OS
Buster. The RPi is connected to the autopilot board over serial and runs the Fractus
software. The mobility service employs DroneKit [38], which communicates with

Chapter 8. Orchestration of Distributed Drone-Edge-Cloud Applications 89

i Edge node Drone
. a

Fractus Net-
[T] [Fractus Agent]

[Mobility] [Camera]

RPi

Camera
[e][Fractus Agent J

Fractus Net-
prox
eth0

Server I_‘_Ie‘h P

Fractus Agent
Fractus Control

Service Service

ArduPilot
(SITL)

Plane Fractus Net-
proxy

FIGURE 8.6: Hardware testbed

the autopilot through MAVProxy [113]. The drone is also equipped with an 8MP
Raspberry Pi Camera Module 2 [144], which is accessed by the camera service using
the picamera library [129]. The drone communicates with the Fractus control plane
and edge/cloud nodes over Internet via a 4G/LTE USB modem, whereas RPi’s WiFi
interface is used for direct communication.

In the following sections, at first, we describe the specific system configurations and
then we present indicative evaluation experiments and results.

8.9.1 Resource usage and performance overheads

Setup. Our lab measurements focus on capturing key performance overheads of
Fractus on the RPi without having to fly the drone. Thus, the Kubernetes cluster
consists of the drone, which uses the software-in-the-loop (SITL) ArduPilot config-
uration [8] (see Figure 8.6), an edge node and a cloud node, all these interconnected
inside a VPN over Internet. The cloud node is placed on the server running the Frac-
tus control plane and as an edge node, we employ another RPi that uses its Ethernet
interface for the default communication and can also interact with the drone directly
over WiFi.

Disk. The Kubernetes-related functions provided by k3s amount to just about 50MB
since old and non-essential code is removed and the respective agents (kubelet,
kube-proxy, flannel agent) are packaged as a single binary. Similarly, the Fractus-
related agents run natively in the host node, while for the mobility and camera ser-
vice we opt for containerized images in order to manage them through Kubernetes.
These are based on the officially provided slim variant of the python images for
ARM and include all the required packages, libraries and their dependencies, tak-
ing together a bit more than 1GB, which is less than 4% of the RPi’s 29GB storage
space of the microSD card we use in our setup. In particular, the mobility service
image is 450MB including gRPC with protocol buffers for the service definition and
data serialization, DroneKit for accessing the autopilot, and Shapely /GEOS [52] for
spatial /geometry-related operations, while the camera service in addition includes
the OpenCV library for the image filtering functionality along its dependencies re-
sulting in 680MB. Thus, it leaves ample storage space for the applications compo-
nents, for which the only software requirement, is to include gRPC in their container

Chapter 8. Orchestration of Distributed Drone-Edge-Cloud Applications 90

T T T
300 T T T SINGLE CORE I TOTAL -

247.73
250 (28.36%) | 40

186.3 199.42
(22,58%) (22.93%) .
200 o) 2 sl |
5
110 0
{12.7%)
100
10 |- |
50 |
o
- Base Services. Services, Services e
]

Bas

Memaory usage (MB)
=
CPU usage (%)

active
Servicesj Services,ce Services e +App
+App

Setup
Setup

(B) CPU usage as a percentage of a single core

(A) Memory usage and of all the available CPUs

FIGURE 8.7: Memory and CPU usage in different setups

image in case they need to access the mobility and camera services. An indicative im-
age size for such python-based components invoking any of these services is around
300MB.

Memory & CPU. We measure the memory and CPU usage for different setups, grad-
ually considering more functionality. At first, we consider only the system-level
agents: the k3s and Fractus agents (Base). Then, we add the mobility and camera
services when they are idle waiting for requests (Services;j,). Next, we use an appli-
cation with two drone components: a driver that invokes in a loop the Goto primi-
tive of the mobility service and then periodically invokes the GetPosition primitive
until the target location is reached, and a passenger that periodically invokes the
Capturelmage and Retrievelmage primitives of the camera service and stores the
retrieved images to disk. No service access policies are applied in this case. We mea-
sure the total memory/CPU requirements, at the system level (Services,ctive) and
including the application (Services,ctive + App).

Figure 8.7a shows the memory usage in MB in the different setups. We also report
the percentage with respect to the total available memory. Note that while the RPi
ships with 1GB of RAM, this is split between the CPU running the host OS and a
separate GPU used for camera-related processing. In order for the camera service to
have acceptable performance, we give 128MB to the GPU, leaving 872MB available
for the rest of the system. Thus, the percentages reported are with respect to the host
OS available memory. For the Base setup, the usage of 110MB (~ 13% of the available
RAM) is mainly related to the container lifecycle management operations. The mo-
bility and camera services use 86MB when idle; usage increases only slightly when
serving application requests. Finally, the two application components combined use
another 50MB of RAM, resulting in a total of 250MB (~ 29% of the available RAM).
This leaves more than 600 MB free for other application components.

Figure 8.7 depicts the CPU usage as a percentage of a single core and in relation
with the CPU capacity of the four cores that are available in the RPj, for the different
setups. The Base setup takes on average 10% (2.5% of the total available process-
ing power). The addition of the mobility and camera services introduces another
26.5% of a core when idle, mainly due to background threads of MAVProxy that pe-
riodically poll the autopilot. The CPU usage of Fractus in a single core is increased
merely by 2% during application execution when these services become active and

Chapter 8. Orchestration of Distributed Drone-Edge-Cloud Applications 91

1000 7 700 .
INSECURE mmmm SECURE mmmm | INSECURE mmmmm SECURE s

: II “

GetSpeed =1 velmage

oyuv oul-n. 10800 BMP

Method Camera Setup

(A) Various service methods (log (B) Capturelmage method for (C) Retrievelmage method for
scaled) different camera setups different camera setups

FIGURE 8.8: Invocation latency for SECURE vs INSECURE setups

start handling the invocations of the application components. Finally, the two ap-
plication components combined utilize less than 4% of a single core (1% of the total
CPU capacity). The total CPU usage is slightly more than 10% of the total CPU
capacity, about 40% of a single CPU, leaving plenty of room for the application com-
ponents to include more complex logic as well as data processing.

Service authentication mechanism. To determine the overhead of the authentica-
tion/security mechanism used in Fractus for the communication between the ser-
vices and the client components, we measure the service call invocation latency for
various service primitives when the SSL/TLS mechanism that encrypts all data ex-
changed is enabled (SECURE) and when it is disabled, using insecure gRPC com-
munication channels (INSECURE). For the Mobility service, we use the GetSpeed
method, which returns the current drone speed as a float, and the GetPosition method,
which returns the current latitude, longitude and altitude as floats. For the Camera
service, we use the Capturelmage method using a resolution of 1920x1080, which
returns just a string with the file name of the image taken, and the Retrievelmage
method requesting an image of 1.2MB size, which is typical for this kind of res-
olution. The results for various service primitives, presented in Figure 8.8a, show
that for the GetSpeed, GetPosition and Capturelmage methods, where the service
response is small in size, the additional delay when using the SECURE vs INSE-
CURE configuration is negligible. We note that the high invocation latency of the
Capturelmage method in the INSECURE configuration is due to the picamera hard-
ware. On the contrary, the latency of the Retrievelmage method increases by about
180% in the SECURE configuration. This is due to the fact that this call returns a
large byte array that needs to be encrypted/decrypted.

To further examine the effect of the security configuration to the invocation latency of
the camera-related methods when capturing/retrieving images of different qualities,
we use the camera setups listed in Table 8.3. The results, presented in Figures 8.8b
and 8.8c show that the increase percentage for the CaptureImage does not exceed
the 1% in all cases, while for the Retrievelmage it ranges from 140% up to 220%.
In particular, for very high image resolutions (8MP), the overhead is over 300ms,
resulting in a total invocation time of 450ms that has to be taken into account by the
application developer.

AccessControl policies. To grant an application request access to the target service,
the Policy Checker performs two actions: it retrieves the current drone position from
the autopilot converting it into a form that can be checked against the regions for-
mat used by the access control policies (the respective delay is denoted as T}s), and
checks if the position lies inside any of the regions of the policies associated with the

Chapter 8. Orchestration of Distributed Drone-Edge-Cloud Applications 92

TABLE 8.3: Camera setups used in the experiments

| Name | Resolution | Typical Size |
LowRes (VGA) | 640x480 180KB
720p (HD) 1280x720 490KB
1080p (FHD) 1920x1080 | 1.2MB
8MP 3280x2464 | 4.1MB

100

T T T T
LowRes 720p mmmmm 1080p W 8MP

T T
TP o HEET, . S

10 - =

Invacation overhead (ms)
Latency (s)

1 5 10 50 100 None BLURy, BLURwep ANONpyxer ANONgr
AccessControl Policies PrivacyControl Policy

(A) Invocation overhead due to AccessControl (B) Invocation latency of Retrievelmage due
policies to PrivacyControl policies (log scale)

FIGURE 8.9: Service access overheads caused by different policies

application (the delay is denoted as T,j,). We vary the number of AccessControl
policies and measure at the service-side the worst case introduced latency, i.e., assum-
ing all regions specified by policies are checked. The results, shown in Figure 8.9a,
indicate that the introduced overhead mainly comes from T),s, which remains fixed
at around 3.7ms. On the other hand, as expected T, increases with the number
of policies, however, in absolute values it remains relatively low even when 100 Ac-
cessControl policies are considered (~ 2.5ms). For a more typical scenario with 10
installed policies per application, the total overhead is less than 4ms, which is prac-
tically negligible.

Corrective actions. Depending on the method invoked, after granting access to the
service call, one or more policy types may need to be checked to determine whether
corrective actions should be applied. For instance, in the Goto method of the mo-
bility service the target location has to conform with the geofence policies, and the
target altitude has to be within the bounds set by control limitation policies. The
respective overheads when one policy of each type is present are 13ms and 2.5ms,
resulting in a total invocation delay of 25ms, which has no effect on the application
for typical service usage.

Regarding the camera service, we investigate how the different privacy-preserving
actions affect the invocation latency of the RetrieveImage method. Specifically, we
consider the BLUR 4y and BLURpgp actions which apply blurring to the whole
image by convolving it with a low-pass filter kernel using the averaging and the me-
dian method, respectively, and the ANONp;xgr and ANONpLyr actions which de-
tect faces and anonymize them using pixels of a fixed color or the Gaussian blurring
method, respectively. As a reference, we compare with the case where no privacy
action is applied (None).

The results are shown in Figure 8.9b for different camera resolution settings. As
expected, the overhead increases for higher image resolution. For simple actions

Chapter 8. Orchestration of Distributed Drone-Edge-Cloud Applications 93

like BLUR 4y, the latency is relatively small in absolute terms, growing up to 1.5s
for larger 8MP images. For the more fine-grained actions, the most costly being
ANONGBLuR, the latency grows up to 3 seconds, even for the three lowest resolu-
tions, while for the 8MP setup it goes up to 7seconds. Clearly, such latencies show
the limits of the RPi and have to be taken into account by the programmer when
developing components that invoke such (potentially) time-consuming methods.

Network switching mechanism. We measure the delays associated with the net-
work switching functionality of Fractus for a scenario where the drone interacts via
4G with the instances of hybrid components located in the cloud (default) and enters
the WiFi range of an edge node hosting instances of these hybrid components. Once
ad hoc WiFi communication is established with the edge node, which takes on aver-
age 620 ms, the Fractus net-proxy components start the performance measurements,
which can take several seconds depending on the application requirements and the
associated metrics. Note that this does not introduce any delay at the application
level since the drone components continue to interact with the hybrid components
on the cloud via 4G. If it is decided to switch the target instance to the one located
at the edge, the time needed to start redirecting application traffic over WiFi can be
expressed as Treqir = Tinfo + Tappry, Where Ty, is the time to exchange routing infor-
mation, which takes about 7.5 ms, and T, is the time required to set the routing
table rules at both sides. T, can be expressed as 2 x N X T, where N is the to-
tal number of service-providing components on the drone and edge node (for each
one, a rule needs to be set at both sides) and T}, is the time required to set a single
routing rule, on average 55 ms. For example, if the edge node provides one service
to the drone (N=1), T}y, is measured at about 120 ms, which increases linearly with
the number of service-providing components, e.g., for N=4 it takes about 450 ms.

8.9.2 Field experiments

Setup. Our field experiments focus on testing the drone-related functionality in real-
world conditions. Thus, the Kubernetes cluster includes the drone and the Fractus
control plane, which is hosted on a Dell Precision Tower 5810 server running a stan-
dard Linux distribution (Ubuntu 18.04) and is connected to the drone via a VPN.
Figure 8.10 shows the experiment’s overview, with the drone located at HOME. We
use a typical application consisting of two drone components: The Navigator is a
driver with partial control at two points CTRL1 and CTRL2. At CTRL1, it follows
path-based navigation visiting in sequence WP1, WP2, WP3 and WP4. At CTRL2,
it follows region-based navigation moving inside REGION2. The AerialViewer is a
passenger component that captures images periodically, every 10 seconds, while the
drone is in these areas of interest.

Application deployment and system chauffeur. At first, Fractus calculates the
drone operation areas. For CTRL1 the area is the dilated polygon resulting by ap-
plying a (configurable) safety radius of 7 meters to the line segment specified via the
provided waypoints (CTRL1 — WP1 — WP2 — WP3 — WP4), whereas for CTRL2
the area is the user-defined region (light blue and grey shaded areas respectively).
Since there is a single drone candidate, this is selected as host for the deployment
of the application components. Furthermore, as the Navigator requests only par-
tial control, and the initial drone location (HOME) does not match the first control
point (CTRL1), Fractus introduces a chauffeur to arm the drone, take off to a default
altitude and move to CTRL1, where the application driver (Navigator) takes over.
When the drone reaches WP4 and returns control, the chauffeur drives the drone to

Chapter 8. Orchestration of Distributed Drone-Edge-Cloud Applications 94

REGION1

I recion:
~ No-fly zone

No-photo zone
ﬁ' HOME

Control point
@ REGION1 waypoint
Q REGION2 waypoint '
9 Extra waypoint

mmmm Normal course

Geofence violations
with policies
— O€OfENce violations
no policies
* ImageCapture
success

* ImageCapture
discarded

FIGURE 8.10: Overview of the field experiment

the second control point (CTRL2). Inside this region, the Navigator makes a zig-zag
movement (CTRL2 — WP5 — WP6 — WP7 — WP8 — WP9) and returns control.
Then, the chauffeur performs a ReturnToLaunch which takes the drone up to 15m,
drives it to HOME and lands it.

Policies generation. In the submitted application description, the Navigator is granted
access to the Goto and GetControl/ReturnControl methods of the mobility service
while the drone is inside the operation area, through corresponding AccessControl
policies. Similarly, the AerialViewer is granted access to the Capturelmage and Re-
trievelmage methods of the camera service when the drone is in the specified area.
Goto commands are further restricted by GeofenceControl policies that by default
discard commands with coordinates outside operation area boundaries (returning a
corresponding error code to the component). In addition, the red shaded region in
Figure 8.10 is considered a sensitive no-fly zone. If the Navigator issues a Goto com-
mand to this area, it is considered a malicious behavior, and as a result application
access to all service calls is revoked and a ReturnToLaunch command for emergency
landing to the HOME location is issued. Also, the allowed flight altitude after takeoff
is set from 5 to 15 meters above terrain, enforced via LimitControl policies. Finally,
the yellow shaded stripe inside REGION?2 is considered a no-photo zone, thus a Pri-
vacyControl policy is added to discard calls to the camera service when the drone is
in that region.

Normal execution. The bold blue line in Figure 8.10 depicts the course of the drone
during a normal execution of the application, and the blue stars indicate the loca-
tions where the Aerial Viewer successfully captures and retrieves an image. Also, the
blue line in Figure 8.11 plots the recorded flight altitude (relative to the takeoff lo-
cation) during the normal execution where the Navigator keeps the drone steadily at
10 meters. The rise to 15 meters in the last phase before landing is due to the default
altitude set by the system chauffeur.

Chapter 8. Orchestration of Distributed Drone-Edge-Cloud Applications 95

20 - - T

Al M Normal
I| \ | Altitude viclations - with policies
) | II Altitude violations - no policies

15 [A

Altitude {m)
=
-4

o 50 100 150 200
Execution time (s)

FIGURE 8.11: Drone altitude for normal execution and when the ap-
plication violates the limits with vs without policies

Enforcement of geofence limits. We program the Navigator to deviate from the ar-
eas declared in the control points. While the drone is in REGION]1, after reaching
WP2, we introduce a Goto command to WP-E1, and while the drone is in REGION2,
after reaching WP7, we introduce a command to WP-E2 in the no-fly zone. The red
trace in Figure 8.10 shows the course followed without any GeofenceControl poli-
cies, whereas the green trace shows the course followed with these policies enabled.
In the latter case, the drone trace in REGION1 remains unchanged since WP-E1 is
simply discarded, whereas in REGION2 the application execution is disrupted af-
ter issuing WP-E2, followed by the emergency landing to HOME location under the
control of the system.

Enforcement of flight limits. We program the Navigator to set the altitude of the
Goto commands for WP1 and WP3 to 20 meters, and for WP6 to 4 meters, thereby
violating the LimitControl policy for the flight altitude. Figure 8.11 shows the alti-
tude (relative to the takeoff location) during such an execution (green) vs an execu-
tion without the altitude LimitControl policy in place (red). As can be seen, every
time the application attempts to violate the bounds, Fractus manages to enforce the
proper limit.

Enforcement of privacy restrictions. We program the AerialViewer to take photos
also when the drone is above the no-photo zone inside REGION2 (red stars in Fig-
ure 8.10). Such requests are discarded due to the PrivacyControl policy and the re-
spective invocations of the camera service fail, returning an error to the application.

8.9.3 Simulation experiments

Setup. Our simulation experiments focus on illustrating provided functionality,
benefits and deployment overhead for more complex scenarios. The setup used,
illustrated in Figure 8.12, is based on the simulation environment presented in chap-
ter 2, section 2.3. We configure a multi-node Kubernetes cluster on a single ma-
chine using k3d [70], where each node, including drones, is represented by a Docker
container with the corresponding Fractus software. The drone’s mobility service
accesses ArduPilot SITL, the physics simulation is provided by the Gazebo simula-
tor [77] and the camera service accesses Gazebo’s virtual camera stream. In edge
nodes the camera service returns prerecorded images retrieved from a database.
Networking between the Fractus control plane and the nodes is provided through

Chapter 8. Orchestration of Distributed Drone-Edge-Cloud Applications 96

Edge node I_WIFI_] I_WiFi Drone

-

Fractus Agent Fractus Net-] [

9 [proxy Fractus Agent

= = Fractus Net- Mobility Camera Service ||
Images DB o

L (mockup)
Iﬂ}_ .

=

Bridged network NS L =2

Physics Simulator & Graphics

Server ,W'— ArduPilot Plugin
Fractus Agent Gazebo Simulator

Fractus Net- I Static Map World i
Proxy Plugin

FIGURE 8.12: Simulation setup

QA

Camera Service
(moikup]

—_—

Service

4G

oy |

Fractus Control
Plane

an isolated bridge network. For the drone’s simulated 4G interface, we set the la-
tency to 60ms and limit the transmission rate to 8Mbps, via the Linux traffic control
utility. WiFi networking between drone and edge nodes is through ns-3 [147], set to
operate in the ad hoc mode of 802.11g with a data rate of 24Mbps.

Requirements-aware deployment and networking. We use an application with
three components mimicking the traffic monitoring application without using the
GroundViewer and the Datastore component. The Navigator uses the drone mobility
service to take off at WP1, set flying speed to 3m/s, go to WP2 and then to WP3
where it lands the drone. The AerialViewer is the drone passenger that retrieves im-
ages every 1 second and sends them to a dummy implementation of the hybrid
cloud-edge ImageChecker that does not perform any actual processing. Target Im-
ageChecker selection heuristic is set to maximize the ingress bandwidth. Figure 8.13a
shows the application waypoints (red markers), expected path (red line) and the
positions of the edge nodes (blue markers); those with a blue circle have WiFi inter-
faces and the radius indicates their range. The figure also illustrates the deployment
of multiple ImageChecker instances on the edge nodes (stars). Note that E2 and E5
are filtered-out as the former does not have a WiFi interface and the latter does not
offer WiFi coverage in the drone’s path.

Figure 8.13b plots the measured bandwidth between AerialViewer and the instances
of the ImageChecker on the cloud and the WiFi-connected edge node as reported by
iperf. The vertical lines show the intervals where each instance is selected as target.
It can be seen that, whenever possible, Fractus favors the nearest instance located at
the edge since direct WiFi connectivity offers higher bandwidth. Note that since the
drone can have a single direct WiFi link with one of the edge nodes at any point in
time, in cases where the WiFi coverage of different edge nodes is overlapping, Frac-
tus switches to the cloud instance as target (via 4G) in order to connect with another
edge node that is closer to the drone direction (see 90th second). The intermediate
target switch to the cloud instance ensures a continuous data flow at the application
level, during the time it takes to establish a direct wireless connection to the next

Chapter 8. Orchestration of Distributed Drone-Edge-Cloud Applications 97

cloud (4G) E3 (WiFi)

El (WFi) E4 (WiFi)
9 Illwllpa i: L ol 3} ol E3 clow d E4
E2 : E4 16 ¢
P 9 7 out
E3 3 1}
5 wp2 0 = ol
Q 2 Wl
ES]
E1l 5 ep
o
we1 2|
9 Waypoint Path 9 Edge node 3 ImageChecker component %o ES ® 50 ® 100 120
Time {s]
(A) Waypoints of the application Navigator and (B) Measured bandwidth between AerialViewer
deployment of the ImageChecker on the edge and the ImageChecker instances, and selected tar-
nodes get instance

FIGURE 8.13: Simulation experiment showcasing the requirements-
aware application deployment and networking

edge node and to evaluate the link before deciding to switch the target instance.

Development benefits. We built a version of the above application that accesses the
Fractus camera and mobility services and achieves the same behavior without utiliz-
ing the network management of Fractus. To this end, we let the AerialViewer access
directly the drone’s WiFi interface to perform the discovery of nearby edge nodes,
the connectivity establishment and the traffic redirection. Corresponding code is
also placed at the ImageChecker. Even for such a simple application, indicative im-
plementations of the components are 193 and 125 lines of code larger compared to
their original versions (increases of 240% and 440%, respectively).

Note that, since the management of the network addresses has to be performed man-
ually and the heuristic that leads to network switching is hard coded in the applica-
tion code, the adaptation for a different system setup or different application needs,
requires extra manual programming effort. Also, for the component code to per-
form these operations, the respective user-level pods must run in privileged mode,
which creates many security risks and gives almost unrestricted access to resources
on the host system. Further, the deployment of the application components would
have to be performed in a hardwired way through manual inspection of each node’s
networking capabilities. From the above it is clear that Fractus greatly reduces the
programming and deployment effort.

Application deployment overhead. The total application deployment time is Tyeproy =
Tarea + /ilter + Trj?slter + Thost + Teomp, consisting of the time needed to calculate the

area of (iofgeration, filter the candidate hosts based on their location and resource
availability, select the best hosts and deploy the application components, respec-
tively. Here, we focus on the overhead of Fractus, leaving out Trfelslter and T¢omp which
are introduced by Kubernetes. We use the full-fledged traffic monitoring applica-
tion described in Section 8.2, where the path of the Navigator includes 20 waypoints.
We take measurements for different configurations where we vary the number of
drone and edge nodes while keeping a ratio of 1:5 between them. We also vary their
location so that only 10% to 20% (but at least one) is a candidate for hosting each

application component.

Figure 8.14 presents the results. At larger scales, most of the overhead comes from
Tl{)lclter and in particular the time to filter candidates for the hybrid cloud-edge com-

ponent. This is due to the number of checks performed when many edge nodes are

Chapter 8. Orchestration of Distributed Drone-Edge-Cloud Applications 98

1000 ¢

FJ:OJ (Teotal) —— b
p=0.2 (Tiotal) —— p

1 (Tioe ™ (hybrid)) - =+~]
2 (Tic e (hybrid)) = =+ =]

100 &

10

Overhead (s)

0.1 +7 i | L
2-Drones 10-Drones 50-Drones
10-EdgeNodes 50-EdgeNodes 250-EdgeNodes

Setup

FIGURE 8.14: Deployment overhead of Fractus (y-axis in log scale)

located in the area of operation. One way to reduce this overhead is to stop check-
ing for additional candidates once enough have been found, based on a threshold
similar to the percentageOfNodesToScore setting in Kubernetes [95].

99

Chapter 9

Related Work

In this chapter, we discuss previous research related to the orchestration and the sys-
tematic testing of drone-based applications. In the first section, we present indicative
edge computing platforms that follow different application architecture approaches,
drone-specific frameworks and representative approaches for the management of
application-level networking. In the second section, we present drone simulators
and assessment methods related to cyber-physical systems.

9.1 Edge-related Application Architectures & Orchestration

9.1.1 Edge computing platforms

Edge computing, which places computation and storage at the edge of the network,
bringing them closer to mobile devices and sensors, was first introduced as a con-
cept two decades ago, in 2001, under the term cyber foraging [153] with the intend to
augment the capabilities of mobile devices by leveraging nearby infrastructure. The
establishment however of cloud computing during the mid-2000s favored at first
distant data centers for the amplification of mobile resources. This on-demand ac-
cess to a shared pool of dynamically configured computing resources and to higher-
level services, expanded dramatically the capabilities of applications and gave birth
to the mobile cloud computing paradigm [36]. Early works, like MAUI [32] and
CloneCloud [28], showcased that fine-grained offloading of data processing parts
of mobile applications can lead to impressive optimizations in energy consumption
and total execution time. Nevertheless, the emergence of mobile applications with
high quality of service (QoS) requirements along with large-scale Internet of Things
(IoT) deployments made again evident the need for proximity to achieve scalability,
responsiveness and privacy preservation. Since then, the interplay between cloud
and edge computing gave rise to many models targeting different needs and follow-
ing different approaches.

Cloudlet [154] proposes a small-scale data center, comprised of a resource-rich com-
puter or cluster of computers, located at the edge of the network for offloading back-
end cloud services. In the same vein, ParaDrop [106] and AirBox [14] present edge
platforms for deploying functionality on behalf of remote, cloud-based services,
with the latter providing edge-related security and privacy by leveraging trusted
execution environments. While these approaches try to address bandwidth use and
latency requirements in mobile device-cloud communication by introducing a single
intermediate layer, CloudPath [119] presents the so-called path computing, a multi-
level architecture deployed over the geographic span of the network, from cloud
datacenters to the edge, and supports the dynamic hierarchical deployment of cloud

Chapter 9. Related Work 100

services consisting of lightweight, stateless event handlers. In terms of resources
provisioning/orchestration, Cloudlet utilizes dynamic VM synthesis and just-in-
time provisioning initiated by the mobile devices [56], AirBox and ParaDrop use
cloud-based provisioning of Docker containers, and CloudPath provides a Function
as a Service (FaaS) system where functionality deployment is based on user-defined
preferences and the status of the computing nodes. Our work, in both the platform
as a service system and Fractus, presents some similarities with AirBox/ParaDrop
regarding the application deployment/resource allocation model and mechanisms.
However, on a conceptual level Fractus is not limited on bringing cloud functionality
closer to mobile or static IoT devices to serve them, but also provides a transparent
computation-communication continuum across drones, edge nodes and the cloud,
while addressing key aspects that make drones very different from mobile user de-
vices such as smartphones.

The continuous advances in embedded platforms that provide "deep edge"/leaf de-
vices themselves with more capabilities have created a line of research focused on
small local clouds. Two representative systems focused on the orchestration and
management of clouds consisting solely of handheld mobile devices are Femto-
clouds [57] and Serendipity [160], where the former uses a centralized controller
device placed at the edge for the task assignment and scheduling while the latter
follows a fully distributed approach. Our work also tries to take advantage of local
resources; however, orchestration/scheduling is done in a centralized manner, based
on global knowledge from the cloud and known mobility patterns of the drones.

Thematically closer to our work are platforms creating a unified layer of resources
that can be accessed transparently by the applications, like PCloud [65] where a per-
sonal cloud instance, is formed that seamlessly combines the appropriate resources
according to application needs. From a design perspective, our work is more similar
with FocusStack [4], which extends the well-known OpenStack platform for man-
aging edge devices as typical datacenters, while we opt for Kubernetes, the most
widely adopted container orchestration platform. FocusStack employs a geographi-
cal routing layer providing location-based scoping to reduce management commu-
nication between edge and cloud and also to enable interactions between edge de-
vices. However, in the presented system prototype, the georouter server through
which all these interactions take place is in the cloud, while Fractus supports direct
wireless communication between the drone and edge nodes based on their proxim-
ity. Moreover, the aforementioned systems are mainly focused to computation and
passive sensing applications. Our work goes beyond that point, by including the
aspect of mobility control and taking care of the respective requirements.

9.1.2 Drone-specific platforms

There are works targeting solely the orchestration and management of drone appli-
cations that follow different approaches. Works like UAV as a Service (UAVaaS) [178]
and Dronemap Planner [80] propose service-oriented architectures for virtualizing
the access of end-users to multi-tenant drones through web services. These works
follow the cloud robotics approach [62] to the extreme, moving all of the application
intelligence to powerful infrastructure and making the drones act as simple agents.
While this approach can potentially achieve increased resource sharing and prior-
itization between applications, it eliminates the ability to run application software
directly on the drone, which can be quite important for latency-sensitive operations
and data-driven application behavior.

Chapter 9. Related Work 101

Closer to our approach are works that enable the native execution of applications
on the drone. For instance, AnDrone [169], proposes a drone as a service (DaaS) so-
lution that combines a cloud service with a virtualization architecture on the drone
that enables the execution of container-based applications. However, AnDrone fo-
cuses on enabling multiple users to share a drone and run Android-specific appli-
cations that access the flight controller and the sensors, rather than on monitoring
application behavior and enforcing safety and privacy related rules based on firm
agreements. Following a different approach, BeeCluster [61] presents a drone or-
chestration approach following a predictive optimization strategy for minimizing
the total execution time of drone-based sensing tasks. Our work extends these ef-
forts, aiming at the end-to-end deployment of next-generation drone applications
that can take full advantage of edge and cloud resources in a transparent way, rather
than dealing only with the part of the application that resides on the drone.

Air traffic management & safety. Currently, various efforts are in progress from
different official organizations towards low altitude airspace management systems
that would enable the integration of drones in urban environments [121, 165, 158]. In
the proposed architectures, the core management system is responsible for review-
ing flight plans and monitoring those in progress to check their compliance [67]. In
case of breaches and emergency situations, drone users/operators are notified to act
properly, while collision avoidance is typically handled with sense and avoid tech-
nology.

In this thesis, we approach this systems challenge from a software perspective. Un-
like the aforementioned systems, we propose a software-based automated solution,
which is based on a centralized controller having an up-to-date global view of the
running and scheduled operations, and we showcase the ability of enforcing restric-
tions in case of violations based on pre-flight agreements, without any user involve-
ment. In addition, our approach goes beyond strict airspace management issues and
can support a wider range of restrictions through the controlled access of the drone’s
sensor/actuator payload.

To achieve a degree of safety in drone operations in a non-centralized /ad-hoc man-
ner, the most common practice is to use the geofencing capabilities of the autopi-
lot. This approach can offer increased protection even when piloting the drone via
remote control. However, this does not address more refined restrictions, e.g., con-
cerning the use of specific sensors. Also, it does not offer the same level of flexibility
for the corrective actions that can be taken in case of a violation, nor the uniformity
that can be provided by our approach on top of different autopilot platforms or dif-
ferent versions of the same platform (which may support slightly different features).

Security & isolation. A widely used technique to achieve privacy is to isolate the pe-
ripherals and control the access to them, which can be achieved using virtualization
(extensions) or hardware security extensions. VirtualDrone [179] utilizes hardware-
assisted virtualization and focuses on the attack-resilient control of drones. It creates
two separate control environments, one running in a virtual machine where user
applications are executed, and a secure one which runs on the host platform. This
way, access to peripherals is monitored and in case of violation the application en-
vironment is terminated and the secure one takes over. On the other hand, ARM
TrustZone [9] trusted hardware components are utilized by PROTC [107] to autho-
rize access to drone peripherals, and AliDrone [108] in order to keep tamper-proof
GPS logs and therefore determine the drone’s compliance regarding no-fly zones.

Chapter 9. Related Work 102

Both approaches fit our system architecture and could be adopted as different ver-
sions of the drone runtime environment. In our prototype implementations, the de-
sired isolation is based on Docker containers and Kubernetes pods, which are more
lightweight and offer the required level of control, given that we do not focus on ma-
licious applications designed with the intention to attack/compromise the software
stack of the drone.

9.1.3 Network management

During the last decade a lot of research has been dedicated in the softwarization and
virtualization of network functions and systems towards supporting advanced traf-
fic engineering techniques and enabling the dynamic sharing of network resources.
Software-defined networking (SDN) proposes an architecture that centralizes the
network intelligence by separating the control layer (routing process) from the data
layer (actual packet forwarding) [86]. This approach also enables programming
the network behavior using software applications, which significantly simplifies
network management and operation. In addition, network function virtualization
(NFV) virtualizes network functions that were traditionally implemented in hard-
ware equipment (e.g., routers and firewalls) and thus enables the flexible creation of
network services. NFV management and orchestration (NFV MANO) frameworks,
like OSM [43], follow cloud orchestration techniques for the efficient provisioning of
these network services in virtualized infrastructure considering both the Quality of
Service (QoS) needs of the different vertical industries being served and the optimal
usage of the allocated resources.

The 5G concept adopts this service-oriented view of the network enabled by the
combination of SDN and NFYV to offer isolated end-to-end virtual networks on top of
a single physical network infrastructure and thus realize its vision of satisfying dif-
ferent and possibly contrasting QoS requirements of a variety of applications [181].
While 5G can benefit significantly drone-based applications in various ways, it ne-
cessitates extensive deployments by network operators that will take time in order
to offer the required wide coverage and stability. Also, most of the static devices
at the edge will likely keep using various networking technologies based on spe-
cific/targeted application needs [156] [173]. Thus, direct communication with them,
if needed, will only be possible through a multi-networking approach like the one
we follow in Fractus.

In the edge environment, our work shares similarities with systems that support
technology-agnostic interactions. Haggle [163] separates networking details from
the application allowing seamless connectivity of web applications across infrastruc-
ture and infrastructure-less communication environments. ubiSOAP [23] provides
network-agnostic connectivity with QoS-aware network link selection and SOAP-
based communication over a multi-network overlay. Similarly, Omni [72] is a more
recent effort towards a multi-networking middleware that enables the opportunistic
use of wireless technologies by leveraging various device-to-device communication
capabilities of IoT devices. Given that ubiSOAP and Omni target opportunistic IoT
networking, a large part of these works is dedicated on the discovery of nearby de-
vices offering compatible services. Differently, Fractus uses a centralized cloud layer
that has concrete knowledge of the location and available communication technolo-
gies of drone and edge nodes and exploits this knowledge to produce suitable com-
ponent deployment configurations.

Chapter 9. Related Work 103

In the context of Kubernetes, it is widespread practice to connect application com-
ponents in a loosely coupled way through the Services abstraction, which defines a
logical set of component instances providing the same functionality [89]. Service
meshes, like Istio [64], try to completely separate the application’s business logic
from the communication logic (e.g., service discovery, load balancing, failover) by
creating an abstracted application-aware overlay. While these meshes allow fine-
grained management through centralized policies, they also introduce extra over-
head which is more visible in resource constrained environments due to the injection
of sidecar proxy containers in the pods of application components.

Notably, more lightweight, edge-oriented Kubernetes derivatives have been pro-
posed recently, which allow application components to take advantage of various
networking technologies. For instance, KubeEdge [87] introduces an MQTT-based
communication model through custom protocol mappers but has the drawback that
it does not facilitate service-based communication between application components.
SMARTER [46] makes use of the device plugin [91] to directly expose the low-level
networking interfaces to the application components and provides a very simple
container network interface that makes each edge node inaccessible from the oth-
ers through cloud-style microservices communication. Although these approaches
can be definitely useful in certain application fields, they break the familiar service-
based interaction pattern between application components and shift the responsi-
bility of connectivity management to the application developer. In contrast, Fractus
can transparently take advantage of different ad-hoc networking capabilities under
the hood.

9.2 Testing of Drone Applications

9.2.1 Drone simulators

A well-known method for testing drone-based applications before deployment is
through software-in-the-loop (SITL) and hardware-in-the-loop (HITL) simulation
environments. For instance, [152] describes a SITL platform for the evaluation of
control algorithms based on the Microsoft Flight Simulator [116] for the modelling of
the flight dynamics and the simulation visualization. HIL-based simulators like [69]
and [109] enable the testing of the actual hardware systems. The former assists the
validation of drone autopilot hardware and software for a small drone during the
development phase, while the latter enables the rapid prototyping of control algo-
rithms specifically for the Piccolo autopilot hardware and supports a wide range
of aircrafts. Both configurations employ Matlab/Simulink for the modeling of the
drone dynamics and the FlightGear simulator [49] for the simulation visualization.

Another line of work targets the testing of collaborative multi-drone scenarios. Mul-
tiUAV [143] is built on Matlab/Simulink and targets the evaluation of cooperative
control algorithms for multiple but homogeneous, UAVs. The simulated vehicles in-
clude embedded flight software implementing the cooperative control algorithms,
vehicle dynamics and a custom autopilot that makes the vehicles capable of way-
point navigation. [59] presents a HITL simulator for multi-aircraft scenarios, which
consists of a server that runs flight dynamics model (FDM) instances of JSBsim [175]
for each particular aircraft. The drone autopilots interact with the respective FDMs
through LabView-specific hardware, which provides the necessary sensor/actuator

Chapter 9. Related Work 104

data forwarding. While these simulation setups share similarities to what we pro-
pose, they focus merely on testing the autopilot functionality without simulation
support for application/ mission specific scenarios.

Gazebo [77] is a feature-rich 3D robotic simulation platform. It follows a layered
architecture that allows high modularity with the creation of new robotic platforms,
the addition of new sensors/actuators and the utilization of different physics en-
gines. Also, through suitable plugins it can be used for SITL/HITL drone testing.
AirSim [159] is a more recent platform that offers physically and visually realistic
simulations through the usage of the Unreal Engine and is focused on enabling de-
velopers of autonomous systems to generate large amounts of training data to be
used by machine learning algorithms.

Closer to the testing framework that we have developed are platforms that com-
bine different simulation aspects in a single environment. FlyNetSim [12] provides a
simulation setup for conducting flexible application experiments using multiple vir-
tual drones with Wi-Fi communication capabilities. Similar to our work, it utilizes
ArduPilot SITL [8] for the simulated drones and the ns-3 network simulator [147] for
the wireless communication, however each simulated drone corresponds to a thread.
While this design decision makes FlyNetSim more lightweight, it does not achieve
complete isolation between the different simulation entities. UTSim [2] is another
recent simulation framework based on the Unity game engine which is focused on
studying air traffic integration issues like sense and avoid, navigation and path plan-
ning algorithms. The main drawback is that testing scenarios can be implemented
only using its custom user interface, without any integration capabilities regarding
the most popular application frameworks in the drone domain, like DroneKit and
ROS, and the respective communication protocols, e.g., MAVLink.

In this thesis, we present a modular testing environment based on the AeroLoop
system [81], where we significantly enrich the provided functionality by providing
a digital twin configuration. Furthermore, we extend its simulation capabilities by
integrating more flight dynamics simulators, like Gazebo, offering more networking
options and supporting a more lightweight execution through LXDs instead of VMs.

9.2.2 Assessment of cyber-physical systems

There is a variety of approaches towards assessing systems operating in dynamic
environments. A broad concept that can be used at all stages of the (design-build-
operate) lifecycle of such systems is that of the digital twin (DT), which is a dynamic
virtual representation of a physical system/entity, consisting of a simulation model
and data coming from the real world. The intended use determines the models to
be used. It may vary from achieving better design or manufacturing, to running
what-if simulations to predict failures or optimize performance.

Some of the proposed approaches, utilize simulation-based techniques in the devel-
opment phase to improve the provided functionality. For instance, [58] introduces
a simulation-based toolchain during the development of automated driving func-
tions for the identification of critical scenarios in cooperative, automated vehicles.
The simulation environment combines a vehicle dynamics simulation of a virtual
vehicle, which is the digital twin of the real one, and a traffic simulation, which pro-
vides the behavior of the other traffic participants, while the classification process
considers standard safety and traffic quality metrics.

Chapter 9. Related Work 105

Other works employ predictive runtime validation through look-ahead simulation.
[17] presents a system that utilizes a simulation-based internal model of a robot in
order to accomplish its goal while assuring its safety. To achieve this, it assesses in
real-time using the Stage robot simulator [171] all possible actions of the decision
search tree (coming from the robot and the dynamic environment), predicts their
consequences and selects the most appropriate one. Also, [29] proposes the run-
time monitoring of software components through the execution of their digital twin,
which are in the form of abstract specifications, in a simulated environment in order
to detect and mitigate malicious behaviors.

WCPS [103] and GISOO [5] are cyber-physical systems simulators providing a holis-
tic simulation environment that enables users to evaluate both the control and com-
munication aspects of such systems utilizing the actual embedded code. In both
cases, sensor data is generated from a physical model, implemented in Simulink,
injected to the corresponding wireless nodes, and later fed back to the controller
(also implemented in Simulink), thereby closing the control loop. For the simula-
tion of the wireless nodes WCPS utilizes TOSSIM [102], whereas GISOO employs
COQJA [124]. A different approach is followed by CyPhySim [101], a framework for
modelling and simulating cyber-physical systems. It is based in Ptolemy II [134] and
provides an actor-oriented modelling environment that allows the usage of different
models of computation at each level of simulation.

The authors in [22] argue that in software systems offline verification before de-
ployment must be accompanied by quantitative online verification of the key re-
quirements at runtime in order to achieve software dependability and adaptive-
ness, through the identification and sometimes prediction of requirement violations.
Along the same lines, in this thesis, we adopt such a holistic checking approach
through a framework that provides the means to test the various software entities of
the platform as a service system both in an offline and online fashion.

106

Chapter 10

Conclusions and Outlook

10.1 Summary

As unmanned autonomous vehicles like drones gain popularity and are being em-
ployed in many applications domains, such as surveillance, monitoring and cargo
delivery, the need to address the various operation-related challenges is becoming
more urgent. In this thesis, we focused on the seamless integration of drones in the
cyber-physical landscape by addressing challenges related to the automation of the
drone operation cycle, the management of safety and privacy issues and the smooth
interaction with existing computing infrastructure. To this end, we have designed
and developed system-level mechanisms for strengthening the robustness of drone
applications and promoting a more structured, managed and automated applica-
tion development and deployment approach, properly integrated with established
computing paradigms like cloud and edge computing.

An integral part of our research was the systematic experimental evaluation of our
work. This was achieved using both a hardware-based testbed consisting of typical
computing platforms for drones, embedded nodes and commodity servers, and an
integrated emulation/simulation environment, which we developed to support the
fast, controlled, safe and flexible testing of more complex scenarios involving mul-
tiple communicating virtual versions of the various system entities, which run the
same (practically unmodified) software as in real deployments and field tests.

Our main contributions are grouped in two parts.

In the first part of this thesis, we answered the question “How to offer more depend-
ability to drone operations and strengthen their overall automation capability?”. In
particular, we focused on application scenarios where a centralized mission con-
troller entity is responsible for executing the application logic by coordinating a team
of drones via high-level commands. We designed two active replication schemes for
tolerating failures critical to the application progress in order to minimize the need
for human intervention. Even though the fundamental principles of active replica-
tion have been laid out a long time ago, the special features of this particular type of
system required a different approach.

At first, we addressed fail-stop failures of the mission controller for both determin-
istic and non-deterministic applications by utilizing logging and checkpointing of
communication and application state information. Then, we addressed Byzantine
failures, where the mission controller may behave arbitrarily due to malicious at-
tacks or hardware and software errors, by introducing an agreement protocol. In the

Chapter 10. Conclusions and Outlook 107

latter case, our approach relied on synchronous communication with signed mes-
sages, requiring N = 2 x f + 1 replicas to tolerate f failures.

We also discussed concrete implementations of the proposed approaches for an ex-
isting programming framework targeting multi-drone applications [85] and identi-
fied the key overhead components. In case of deterministic executions, our mecha-
nism for tolerating fail-stop failures introduces overhead only in the event of a drone
failure, which depends on the size of the log entries that need to be exchanged be-
tween the controller replicas. In case of non-deterministic executions, the overhead
is dominated by the transfer time of the application execution state produced dur-
ing the non-deterministic operations. Finally, the overhead of our Byzantine fault-
tolerant mechanism mainly comes from the agreement protocol between the con-
troller replicas.

Given that in the system model used in our work the mission controller is respon-
sible for the high-level coordination of the drones without being involved in tight
control loops related to the drone stability and the obstacle avoidance, we conclude
that the provided benefits in terms of system robustness can surpass the overhead
introduced by our mechanisms. We note however that the selection of the appro-
priate fault-tolerant mechanism should be application-specific and depend on the
trade-off between the respective overhead and the application’s criticality level /
fault-tolerance needs.

In the second part of this thesis, we targeted the question “How to support the flex-
ible and automated deployment and testing of drone-based applications while en-
suring their smooth integration in the cyber-physical infrastructure?”. To this end,
we designed and implemented two frameworks that can assist application devel-
opers and users in the deployment, monitoring and testing processes, as well as
the efficient interaction of drones with other system entities in the cloud and at the
edge, while ensuring that certain safety and privacy restrictions are not violated. We
adopted the platform as a service (PaaS) paradigm of cloud computing, considering
drones as another type of resource that can be accessed through a shared infrastruc-
ture. However, in our case drones are handled in a special way taking into account
their mobility, their onboard sensing/actuation equipment and the fact that they rely
on wireless communication.

At first, we presented a holistic approach towards supporting a more reliable man-
aged operation of single-component drone applications through a software platform
that takes care of their automated deployment and controlled execution. This plat-
form is coupled with corresponding simulation and digital twin support for detect-
ing bugs before deployment and indicating possible malfunctions during operation
in the real world, respectively. Then, we presented Fractus, an orchestration frame-
work targeting distributed, component-based applications that span over the entire
system landscape, including drones, static edge nodes and the cloud. Fractus sup-
ports the mission-aware placement of the application components and the trans-
parent redirection of application traffic through ephemeral direct communication
links. This is achieved through structured descriptions that accompany the appli-
cation code and allow users to specify placement and communication requirements
in an intuitive way, as well as corresponding, extensible, system-level mechanisms.
Further, safety and privacy constraints are enforced through the policy-based access
of critical resources.

Chapter 10. Conclusions and Outlook 108

We also discussed concrete implementations of the proposed platforms based on
mature software deployment and simulation technologies. Using a real drone in the
field and a simulation setup, we demonstrated the provided functionality through
indicative scenarios. The functional evaluation of Fractus is accompanied by an
extensive quantitative evaluation showing that it decreases the development effort
while incurring acceptable overhead.

We view the shift to a more automated application lifecycle management approach
and the existence of multiple safety layers as key elements towards the wider adop-
tion of drones in the context of next-generation applications that may incorporate
data from various edge and cloud sources. While our contributions are steps in this
direction, more challenges lie ahead. For instance, the inherently distributed nature
of the devices located at the edge of the network make the proposed systems vul-
nerable to physical attacks. In addition, despite the emerging interest from industry
and the establishment of regulations that will enable safe drone flights even in urban
environments, drone- and edge-related systems strive to find the financial incentives
that will establish them in the current computing landscape. With the first, pilot au-
tomated drone flights taking already place in several countries more typical usage
scenarios will likely be standardized in the following years. In turn, this will allow
larger scale deployments where the proposed approaches could contribute towards
the creation of a lively ecosystem.

10.2 Future Work

There are several open research opportunities and practical issues related to our
work that are worth pursuing in the future.

Since the overhead of the fail-stop fault-tolerant mechanism in deterministic and
non-deterministic execution depends on the time needed to exchange the logs and
checkpoint images, respectively, one could investigate ways to reduce these sizes.
For instance, the checkpoint image sizes could be substantially reduced by taking
into account the specific properties and features of the TeCoLa runtime environment
used in our implementation. While compact representations of logs/checkpoints
could reduce the corresponding sizes one should also explore the trade-offs between
the compression ratio and the total overhead including the compression delay. In
addition, the assessment of different radio technologies for the replica-node com-
munication domains and the evaluation of our implementation in the field, using
an appropriate multi-drone testbed, would provide valuable insight of the system
operation and the achieved performance under real-world conditions.

Regarding the Byzantine fault tolerance scheme, from a theoretical perspective, one
could provide a formal proof of the approach, based on key safety and progress
properties. From a practical perspective, since the overhead mainly comes from the
synchronization between the replicas, performance could be improved using a faster
network in the replica domain and cheaper signature/verification methods. Our
work could also serve as a basis for investigating Byzantine fault-tolerant mecha-
nisms for more relaxed assumptions closer to an asynchronous system, as well as
for exploring more flexible schemes to allow less-critical parts of the mission pro-
gram (such as the retrieval of drone state information) to be executed with weaker
fault-tolerant properties. Finally, it would be interesting to support the dynamic
replacement of faulty replicas without having to suspend/resume the mission.

Chapter 10. Conclusions and Outlook 109

Several aspects of the PaaS system could be extended. For instance, one might enrich
the types of corrective actions available to the user in order to provide more expres-
siveness regarding the handling of attempted violations. Also, as a next step to this,
one could introduce a full-fledged exception handling mechanism that would allow
the application program to be aware of the violation attempts and implement its
own handlers for them.

There are also different directions that could be followed to improve and extend our
offline and runtime testing approach. On the one hand, one might explore ways of
enriching the digital twin setup in order to have the ability to run predictive simu-
lations at runtime. On the other hand, it could be of interest to integrate yet another
form of runtime testing, through the support of suitable drills that imitate specific
problematic situations in the PaaS in order to check the successful triggering of the
respective compensating actions.

Finally, there are several ways to extend the functionality and capabilities of Frac-
tus. For example, one could explore the parallel usage of multiple drones by the
same application, as well as the transparent hand-over from one drone to another to
support longer application missions that go beyond the operational autonomy of a
single drone. This, in turn, brings up the need for more advanced drone allocation,
application deployment and monitoring/enforcement processes and mechanisms.
It is also worth investigating a better isolation between Fractus and the applications
running on drones and edge nodes, through the integration of trusted execution en-
vironments like ARM TrustZone [9] or more secure container runtimes that provide
an extra isolation layer, such as gVisor [55]. Since these techniques incur a perfor-
mance penalty, such an approach should take into account the security vs perfor-
mance trade-offs. Further, a more standardized way of describing the application
structure and requirements of each component could be achieved, for instance, by
extending the OASIS TOSCA [167] specification, to have portability over different
deployment technologies.

110

Bibliography

[1] AeroLoop Project. Flexible experimentation with virtual UAVs through a software-
in-the loop and hardware-in-the-loop simulation infrastructure. https://aeroloop.
e-ce.uth.gr/. 2022.

[2] Amjed Al-Mousa et al. “UTSim: A Framework and Simulator for UAV Air
Traffic Integration, Control, and Communication”. In: International Journal of
Advanced Robotic Systems 16.5 (2019). DOI: 10.1177/1729881419870937.

[3] Lorenzo Alvisi and Keith Marzullo. “Message Logging: Pessimistic, Opti-
mistic, Causal, and Optimal”. In: IEEE Transactions on Software Engineering
24.2 (1998), pp- 149-159. DOI: 10.1109/32.666828.

[4] Brian Amento et al. “FocusStack: Orchestrating Edge Clouds Using Location-
Based Focus of Attention”. In: Proc. IEEE/ACM Symposium on Edge Computing
(SEC). 2016, pp. 179-191. DOI: 10.1109/SEC.2016. 22.

[5] Behdad Aminian etal. “GISOO: A Virtual Testbed for Wireless Cyber-Physical
Systems”. In: Proc. 39th Annual Conference of the IEEE Industrial Electronics So-
ciety (IECON). 2013, pp. 5588-5593. DOI: 10.1109/TECON.2013.6700049.

[6] Jason Ansel, Kapil Arya, and Gene Cooperman. “DMTCP: Transparent check-
pointing for cluster computations and the desktop”. In: Proc. IEEE Interna-
tional Symposium on Parallel Distributed Processing (IPDPS). 2009. DOI: 10 .
1109/IPDPS.2009.5161063.

[7] ArduPilot. Open source autopilot. http://ardupilot.org. 2022.

[8] ArduPilot. SITL Simulator.http://ardupilot.org/dev/docs/sitl-simulator-
software-in-the-loop.html. 2022.

[91 ARM. Trustzone. https : //developer . arm. com/ip- products/security -
ip/trustzone. 2022.

[10] Pierre-Louis Aublin, Sonia Ben Mokhtar, and Vivien Quema. “RBFT: Redun-
dant Byzantine Fault Tolerance”. In: Proc. 33rd IEEE International Conference
on Distributed Computing Systems (ICDCS). 2013, pp. 297-306. DOI: 10.1109/
ICDCS.2013.53.

[11] Jean-Philippe Aurambout, Konstantinos Gkoumas, and Biagio Ciuffo. “Last
Mile Delivery by Drones: An Estimation of Viable Market Potential and Ac-
cess to Citizens Across European Cities”. In: European Transport Research Re-
view 11.1 (2019). DOI: 10.1186/s12544-019-0368-2.

[12] Sabur Baidya, Zoheb Shaikh, and Marco Levorato. “FlyNetSim: An Open
Source Synchronized UAV Network Simulator Based on Ns-3 and Ardupi-
lot”. In: Proc. ACM International Conference on Modeling, Analysis and Simu-
lation of Wireless and Mobile Systems. 2018, 37—45. DOI: 10 . 1145/3242102.
3242118.

[13] Nels Beckman and Jonathan Aldrich. “A Programming Model for Failure-
Prone, Collaborative Robots”. In: Proc. International Workshop on Software De-
velopment and Integration in Robotics (SDIR). 2007. URL: http://www.cs.cmu.
edu/~claytronics/papers/beckman-sdir07.html.

https://aeroloop.e-ce.uth.gr/
https://aeroloop.e-ce.uth.gr/
https://doi.org/10.1177/1729881419870937
https://doi.org/10.1109/32.666828
https://doi.org/10.1109/SEC.2016.22
https://doi.org/10.1109/IECON.2013.6700049
https://doi.org/10.1109/IPDPS.2009.5161063
https://doi.org/10.1109/IPDPS.2009.5161063
http://ardupilot.org
http://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html
http://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
https://doi.org/10.1109/ICDCS.2013.53
https://doi.org/10.1109/ICDCS.2013.53
https://doi.org/10.1186/s12544-019-0368-2
https://doi.org/10.1145/3242102.3242118
https://doi.org/10.1145/3242102.3242118
http://www.cs.cmu.edu/~claytronics/papers/beckman-sdir07.html
http://www.cs.cmu.edu/~claytronics/papers/beckman-sdir07.html

Bibliography 111

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Ketan Bhardwaj et al. “Fast, Scalable and Secure Onloading of Edge Func-
tions Using AirBox”. In: Proc. IEEE/ACM Symposium on Edge Computing (SEC).
2016, pp. 14-27. DOL: 10.1109/SEC.2016. 15.

Bharat Bhargava and Shu-Renn Lian. “Independent Checkpointing and Con-
current Rollback for Recovery in Distributed Systems - An Optimistic Ap-
proach”. In: Proc. 7th IEEE Symposium on Reliable Distributed Systems (RELDIS).
1988, pp. 3-12. DOI: 10.1109/RELDIS. 1988.25775.

Jan Dyre Bjerknes and Alan F. T. Winfield. “On Fault Tolerance and Scalability
of Swarm Robotic Systems”. In: Springer Tracts in Advanced Robotics. Springer,
2013, pp. 431-444. DOI: 10.1007/978-3-642-32723-0_31.

Christian Blum, Alan F. T. Winfield, and Verena V. Hafner. “Simulation-Based
Internal Models for Safer Robots”. In: Frontiers in Robotics and Al 4 (2018). DOI:
10.3389/frobt.2017.00074.

Flavio Bonomi et al. “Fog Computing: A Platform for Internet of Things and
Analytics”. In: Big Data and Internet of Things: A Roadmap for Smart Environ-
ments. Springer International Publishing, 2014, pp. 169-186.

Daniel Browning. UAVs can play a vital role in the future of smart cities. Ed. by
Smart Cities Dive. https://www . smartcitiesdive . com/news/uavs- can-
play-a-vital-role-in-the-future-of-smart-cities/586857/ (2020-10-
13).

Navin Budhiraja et al. “The Primary-Backup Approach”. In: Distributed Sys-
tems (2nd Ed.) Pearson, 1993, pp. 199-216. ISBN: 0201624273.

omni calculator. Drone flight time formula. https : //www . omnicalculator .
com/other/drone-flight-time#drone-flight-time-formula. 2022.

Radu Calinescu et al. “Self-Adaptive Software Needs Quantitative Verifica-
tion at Runtime”. In: Communications of the ACM 55.9 (2012), pp. 69-77. DOI:
10.1145/2330667 .2330686.

Mauro Caporuscio, Pierre-Guillaume Raverdy, and Valerie Issarny. “ubiSOAP:
A Service-Oriented Middleware for Ubiquitous Networking”. In: IEEE Trans-
actions on Services Computing 5.1 (2012), pp. 86-98. DOI: 10.1109/TSC.2010.
60.

Miguel Castro and Barbara Liskov. “Practical Byzantine Fault Tolerance”. In:
Proc. 3rd Symposium on Operating Systems Design and Implementation (OSDI).
1999, pp. 173-186. ISBN: 9781880446393.

K. Mani Chandy and Leslie Lamport. “Distributed Snapshots: Determining
Global States of Distributed Systems”. In: ACM Transactions on Computer Sys-
tems 3.1 (1985), pp. 63-75. DOI: 10.1145/214451 . 214456.

Jo-Mei Chang and N. F. Maxemchuk. “Reliable Broadcast Protocols”. In: ACM
Transactions on Computer Systems 2.3 (1984), pp. 251-273. DOI: 10.1145/989.
357400.

Anders Lyhne Christensen, R. O'Grady, and Marco Dorigo. “From Fireflies
to Fault-Tolerant Swarms of Robots”. In: IEEE Transactions on Evolutionary
Computation 13.4 (2009), pp. 754-766. DOI: 10.1109/TEVC.2009.2017516.
Byung-Gon Chun et al. “CloneCloud: Elastic Execution between Mobile De-
vice and Cloud”. In: Proc. 6th Conference on Computing Systems (EuroSys). 2011,
pp- 301-314. DOI: 10.1145/1966445.1966473.

Emilia Cioroaica et al. “Towards Runtime Monitoring for Malicious Behav-
iors Detection in Smart Ecosystems”. In: Proc. IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW). 2019, pp. 200-203. DOI:
10.1109/ISSREW.2019.00072.

https://doi.org/10.1109/SEC.2016.15
https://doi.org/10.1109/RELDIS.1988.25775
https://doi.org/10.1007/978-3-642-32723-0_31
https://doi.org/10.3389/frobt.2017.00074
https://www.smartcitiesdive.com/news/uavs-can-play-a-vital-role-in-the-future-of-smart-cities/586857/
https://www.smartcitiesdive.com/news/uavs-can-play-a-vital-role-in-the-future-of-smart-cities/586857/
https://www.omnicalculator.com/other/drone-flight-time#drone-flight-time-formula
https://www.omnicalculator.com/other/drone-flight-time#drone-flight-time-formula
https://doi.org/10.1145/2330667.2330686
https://doi.org/10.1109/TSC.2010.60
https://doi.org/10.1109/TSC.2010.60
https://doi.org/10.1145/214451.214456
https://doi.org/10.1145/989.357400
https://doi.org/10.1145/989.357400
https://doi.org/10.1109/TEVC.2009.2017516
https://doi.org/10.1145/1966445.1966473
https://doi.org/10.1109/ISSREW.2019.00072

Bibliography 112

[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Computer Systems Lab. Department of Electrical and Computer Engineering,
University of Thessaly, Greece. https://csl.e-ce.uth.gr/. 2022.

George E. Coulouris et al. Distributed Systems: Concepts and Design (5th Ed.)
Pearson, 2012. 1SBN: 9780132143011.

Eduardo Cuervo et al. “"MAUI: Making Smartphones Last Longer with Code
Offload”. In: Proc. International Conference on Mobile Systems, Applications, and
Services (MobiSys). 2010, pp. 49-62. DOI: 10.1145/1814433. 1814441,

Yanzhe Cui et al. “ReFrESH: A Self-Adaptation Framework to Support Fault
Tolerance in Field Mobile Robots”. In: Proc. IEEE/RS] International Conference
on Intelligent Robots and Systems (IROS). 2014, pp. 1576-1582. DOI: 10.1109/
TR0S.2014.69427665.

Xavier Défago and André Schiper. “Semi-Passive Replication and Lazy Con-
sensus”. In: Journal of Parallel and Distributed Computing 64.12 (2004), pp. 1380-
1398. DOI: 10.1016/j . jpdc.2004.08.006.

Dell. Dell Precision Tower 5810 spec sheet. https : / /i .dell . com/sites/
csdocuments/Shared- Content _data-Sheets_Documents/en/al/CSG-EN-
XX-ALL-Dell-Precision-Tower-5810-spec-sheet.pdf. 2022.

Hoang T. Dinh et al. “A Survey of Mobile Cloud Computing: Architecture,
Applications, and Approaches”. In: Wireless Communications and Mobile Com-
puting 13.18 (2011), pp. 1587-1611. DOI: 10.1002/wcm. 1203.

Danny Dolev and H. Raymond Strong. “Authenticated Algorithms for Byzan-
tine Agreement”. In: SIAM Journal on Computing 12.4 (1983), pp. 656—666. DOL:
10.1137/0212045.

DroneKit. Developer tools for drones. http://dronekit.io/. 2022.

EASA. Civil drones (Unmanned Aircraft). https : //www . easa . europa . eu/
domains/civil-drones. 2022.

Elizabeth Ciobanu. How Much Does Drone Insurance Cost? Ed. by droneblog.com.
https://www.droneblog. com/how-much-does-drone- insurance - cost/.
Accessed: 2019-01-10. 2021.

E. N. (Mootaz) Elnozahy et al. “A Survey of Rollback-recovery Protocols in
Message-passing Systems”. In: ACM Computing Surveys 34.3 (2002), pp. 375—
408. DOI: 10.1145/568522.568525.

Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and Design. Up-
per Saddle River, NJ, USA: Prentice Hall PTR, 2005. 1SBN: 978-0131858589.
ETSI. OSM Release FIVE Technical Overview. Tech. rep. Jan. 2019. URL: https:
//osm.etsi.org/images/0SM- Whitepaper - TechContent - ReleaseFIVE -
FINAL.pdf.

Mark Louis Fairbairn, Iain Bate, and John A. Stankovic. “Improving the De-
pendability of Sensornets”. In: Proc. IEEE International Conference on Distributed
Computing in Sensor Systems (DCOSS). 2013, pp. 274-282. DOI: 10 . 1109/
DC0SS.2013.80.

Pesech Feldman and Silvio Micali. “An Optimal Probabilistic Protocol for
Synchronous Byzantine Agreement”. In: SIAM Journal on Computing 26.4 (1997),
pp- 873-933. DOI: 10.1137/50097539790187084.

Alexandre Ferreira et al. “'SMARTER: Experiences with Cloud Native on the
Edge”. In: USENIX Workshop on Hot Topics in Edge Computing (HotEdge). 2020.
URL: https://www . usenix . org/conference/hotedge20/presentation/
ferreira.

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. “Impossibility
of Distributed Consensus with One Faulty Process”. In: Journal of the ACM
32.2 (1985), pp. 374-382. DOI: 10.1145/3149.214121.

https://csl.e-ce.uth.gr/
https://doi.org/10.1145/1814433.1814441
https://doi.org/10.1109/IROS.2014.6942765
https://doi.org/10.1109/IROS.2014.6942765
https://doi.org/10.1016/j.jpdc.2004.08.006
https://i.dell.com/sites/csdocuments/Shared-Content_data-Sheets_Documents/en/al/CSG-EN-XX-ALL-Dell-Precision-Tower-5810-spec-sheet.pdf
https://i.dell.com/sites/csdocuments/Shared-Content_data-Sheets_Documents/en/al/CSG-EN-XX-ALL-Dell-Precision-Tower-5810-spec-sheet.pdf
https://i.dell.com/sites/csdocuments/Shared-Content_data-Sheets_Documents/en/al/CSG-EN-XX-ALL-Dell-Precision-Tower-5810-spec-sheet.pdf
https://doi.org/10.1002/wcm.1203
https://doi.org/10.1137/0212045
http://dronekit.io/
https://www.easa.europa.eu/domains/civil-drones
https://www.easa.europa.eu/domains/civil-drones
https://www.droneblog.com/how-much-does-drone-insurance-cost/
https://doi.org/10.1145/568522.568525
https://osm.etsi.org/images/OSM-Whitepaper-TechContent-ReleaseFIVE-FINAL.pdf
https://osm.etsi.org/images/OSM-Whitepaper-TechContent-ReleaseFIVE-FINAL.pdf
https://osm.etsi.org/images/OSM-Whitepaper-TechContent-ReleaseFIVE-FINAL.pdf
https://doi.org/10.1109/DCOSS.2013.80
https://doi.org/10.1109/DCOSS.2013.80
https://doi.org/10.1137/S0097539790187084
https://www.usenix.org/conference/hotedge20/presentation/ferreira
https://www.usenix.org/conference/hotedge20/presentation/ferreira
https://doi.org/10.1145/3149.214121

Bibliography 113

[48]

[49]
[50]
[51]

[52]
[53]

[54]

[55]
[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]
[65]

[66]

[67]

flannel. Network fabric for containers, designed for Kubernetes. https://github.
com/flannel-io/flannel. 2022.

FlightGear. Flight Simulator. https://wuw.flightgear.org/.

Open Source Robotics Foundation. SDF - Simulation Description Format. http:
//sdformat.org/. 2022.

Juan A. Garay and Yoram Moses. “Fully Polynomial Byzantine Agreement
for Processors in Rounds”. In: SIAM Journal on Computing 27.1 (1998), pp. 247-
290. DOI: 10.1137/50097539794265232.

GEOS. Geometry Engine, Open Source. https://libgeos.org/. 2022.

Rachid Guerraoui and André Schiper. “Fault-tolerance by Replication in Dis-
tributed Systems”. In: Proc. Reliable Software Technologies — Ada-Europe '96.
Springer, 1996, pp. 38-57. DOI: 10.1007/BFb0013477.

Pinyao Guo et al. “RoboADS: Anomaly Detection Against Sensor and Ac-
tuator Misbehaviors in Mobile Robots”. In: Proc. 48th IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). 2018, pp. 574-585. DOTI:
10.1109/DSN.2018.00065.

gVisor. Application Kernel for Containers. https://gvisor.dev/. 2022.
Kiryong Ha et al. “Just-in-Time Provisioning for Cyber Foraging”. In: Proc.
International Conference on Mobile Systems, Applications, and Services (MobiSys).
2013, pp. 153-166. DOI: 10.1145/2462456 . 2464451.

K. Habak et al. “Femto Clouds: Leveraging Mobile Devices to Provide Cloud
Service at the Edge”. In: Proc. IEEE International Conference on Cloud Comput-
ing (CLOUD). 2015, pp. 9-16. DOI: 10.1109/CLOUD. 2015. 12.

Sven Hallerbach et al. “Simulation-Based Identification of Critical Scenar-
ios for Cooperative and Automated Vehicles”. In: SAE International Journal of
Connected and Automated Vehicles 1.2 (2018), pp. 93-106. DOI: 10.4271/2018-
01-1066.

Swaroop A. Hangal, Bharat Tak, and Hemendra Arya. “Distributed Hardware-
In-Loop Simulations for multiple Autonomous Aerial Vehicles”. In: Proc. AIAA
Modeling and Simulation Technologies Conference. 2015. DOI: 10.2514/6.2015-
0151.

HBICT. Hash Based Incremental Checkpointing Tool. http://hbict.sourceforge.
net. Accessed: 2019-01-10. 2022.

Songtao He et al. “BeeCluster: Drone Orchestration via Predictive Optimiza-
tion”. In: Proc. International Conference on Mobile Systems, Applications, and Ser-
vices (MobiSys). 2020, pp. 299-311. DOI: 10.1145/3386901 .3388912.
Guogiang Hu, Wee Tay, and Yonggang Wen. “Cloud Robotics: Architecture,
Challenges and Applications”. In: IEEE Network 26.3 (2012), pp. 21-28. DOL:
10.1109/MNET.2012.6201212.

Huawei. 4G Dongle E3372. https : //consumer . huawei . com/en/routers/
e3372/.2022.

Istio. Service mesh. https://istio.io/.2021.

Minsung Jang et al. “Personal Clouds: Sharing and Integrating Networked
Resources to Enhance End User Experiences”. In: Proc. IEEE Conference on
Computer Communications (INFOCOM). 2014, pp. 2220-2228. DOI: 10.1109/
INFOCOM.2014.6848165.

JGroups. A Toolkit for Reliable Messaging. http : / / jgroups . org. Accessed:
2019-01-10. 2022.

Tao Jiang et al. “Unmanned Aircraft System Traffic Management: Concept of
Operation and System Architecture”. In: International Journal of Transportation

https://github.com/flannel-io/flannel
https://github.com/flannel-io/flannel
https://www.flightgear.org/
http://sdformat.org/
http://sdformat.org/
https://doi.org/10.1137/S0097539794265232
https://libgeos.org/
https://doi.org/10.1007/BFb0013477
https://doi.org/10.1109/DSN.2018.00065
https://gvisor.dev/
https://doi.org/10.1145/2462456.2464451
https://doi.org/10.1109/CLOUD.2015.12
https://doi.org/10.4271/2018-01-1066
https://doi.org/10.4271/2018-01-1066
https://doi.org/10.2514/6.2015-0151
https://doi.org/10.2514/6.2015-0151
http://hbict.sourceforge.net
http://hbict.sourceforge.net
https://doi.org/10.1145/3386901.3388912
https://doi.org/10.1109/MNET.2012.6201212
https://consumer.huawei.com/en/routers/e3372/
https://consumer.huawei.com/en/routers/e3372/
https://istio.io/
https://doi.org/10.1109/INFOCOM.2014.6848165
https://doi.org/10.1109/INFOCOM.2014.6848165
http://jgroups.org

Bibliography 114

[68]

[69]

[70]
[71]
[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

Science and Technology 5.3 (2016), pp. 123-135. DOI: 10.1016/j.1ijtst.2017.
01.004.

Jonathan Feist. Drone prices — how much do drones cost? Ed. by dronerush.com.
https://dronerush.com/drone-price-how-much-do-drones-cost-21540/
(2021-08-05). 2021.

Dongwon Jung and Panagiotis Tsiotras. “Modelling and Hardware-in-the-
Loop Simulation for a Small Unmanned Aerial Vehicle”. In: Proc. AIAA In-
fotech at Aerospace Conference and Exhibit. 2007. DOI: 10.2514/6.2007-2768.
K3D. Lightweight wrapper to run k3s in docker. https://k3d.io/. 2022.

K3S. Lightweight Kubernetes. https://k3s.i0/.2022.

Tomasz Kalbarczyk and Christine Julien. “Omni: An Application Framework
for Seamless Device-to-Device Interaction in the Wild”. In: Proc. 19th Inter-
national Middleware Conference. 2018, pp. 161-173. DOI: 10 . 1145 /3274808 .
3274821.

Pierre Kancir. Ardupilot Gazebo plugin. https://github.com/khancyr/ardupilot_
gazebo. 2022.

Riidiger Kapitza et al. “CheapBFT: Resource-efficient Byzantine Fault Toler-
ance”. In: Proc. 7th ACM European Conference on Computer Systems (EuroSys).
2012, pp. 295-308. DOI: 10.1145/2168836 . 2168866.

Jonathan Katz and Chiu-Yuen Koo. “On Expected Constant-Round Protocols
for Byzantine Agreement”. In: Journal of Computer and System Sciences 75.2
(2009), pp- 91-112. DOI: 10.1016/j . jcss.2008.08.001.

Adil Khadidos, Richard M. Crowder, and Paul H. Chappell. “Exogenous Fault
Detection and Recovery for Swarm Robotics”. In: IFAC-PapersOnLine 48.3
(2015), pp. 2405-2410. DOI: 10.1016/j.ifacol.2015.06.448.

Nathan Koenig and Andrew Howard. “Design and Use Paradigms for Gazebo,
an Open-source Multi-robot Simulator”. In: Proc. IEEE/RS] International Con-
ference on Intelligent Robots and Systems (IROS). 2004, pp. 2149-2154. DOI: 10.
1109/IR0S.2004.1389727.

Fanxin Kong et al. “Cyber-Physical System Checkpointing and Recovery”.
In: Proc. ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS).
2018, pp. 22-31. DOI: 10.1109/ICCPS.2018.00011.

Ramakrishna Kotla et al. “Zyzzyva: Speculative Byzantine Fault Tolerance”.
In: ACM Transactions on Computer Systems 27.4 (2010), 7:1-7:39. DOI: 10.1145/
1658357.1658358.

Anis Koubaa et al. “Dronemap Planner: A Service-Oriented Cloud-Based
Management System for the Internet-of-Drones”. In: Ad Hoc Networks 86 (2019),
pp- 46—62. DOI: 10.1016/j.adhoc.2018.09.013.

Manos Koutsoubelias, Nasos Grigoropoulos, and Spyros Lalis. “A Modular
Simulation Environment for Multiple UAVs with Virtual WiFi and Sensing
Capability”. In: Proc. 2018 IEEE Sensors Applications Symposium (SAS). IEEE,
2018. DOI: 10.1109/SAS.2018.8336766.

Manos Koutsoubelias, Nasos Grigoropoulos, and Spyros Lalis. “Virtual Sen-
sor Services for Simulated Mobile Nodes”. In: Proc. 2017 IEEE Sensors Appli-
cations Symposium (SAS). IEEE, 2017. DOI: 10.1109/SAS.2017.7894115.
Manos Koutsoubelias and Spyros Lalis. “Coordinated Broadcast-Based Request-
Reply and Group Management for Tightly-Coupled Wireless System”. In:
Proc. 22nd IEEE International Conference on Parallel and Distributed Systems (IC-
PADS). 2016, pp. 1163-1168. DOI: 10.1109/ICPADS.2016.0153.

https://doi.org/10.1016/j.ijtst.2017.01.004
https://doi.org/10.1016/j.ijtst.2017.01.004
https://dronerush.com/drone-price-how-much-do-drones-cost-21540/
https://doi.org/10.2514/6.2007-2768
https://k3d.io/
https://k3s.io/
https://doi.org/10.1145/3274808.3274821
https://doi.org/10.1145/3274808.3274821
https://github.com/khancyr/ardupilot_gazebo
https://github.com/khancyr/ardupilot_gazebo
https://doi.org/10.1145/2168836.2168866
https://doi.org/10.1016/j.jcss.2008.08.001
https://doi.org/10.1016/j.ifacol.2015.06.448
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1109/ICCPS.2018.00011
https://doi.org/10.1145/1658357.1658358
https://doi.org/10.1145/1658357.1658358
https://doi.org/10.1016/j.adhoc.2018.09.013
https://doi.org/10.1109/SAS.2018.8336766
https://doi.org/10.1109/SAS.2017.7894115
https://doi.org/10.1109/ICPADS.2016.0153

Bibliography 115

[84] Manos Koutsoubelias and Spyros Lalis. “Fault-Tolerance Support for Mobile
Robotic Applications”. In: Proc. 13th IEEE International Symposium on Indus-
trial Embedded Systems (SIES). 2018. DOIL: 10.1109/SIES.2018.8442098.

[85] Manos Koutsoubelias and Spyros Lalis. “TeCoLa: A Programming Frame-
work for Dynamic and Heterogeneous Robotic Teams”. In: Proc. 13th EAI
International Conference on Mobile and Ubiquitous Systems: Computing, Network-
ing and Services (MobiQuitous). 2016, pp. 115-124. DOI: 10 . 1145/2994374 .
2994397.

[86] Diego Kreutz et al. “Software-Defined Networking: A Comprehensive Sur-
vey”. In: Proceedings of the IEEE 103.1 (2015), pp. 14-76. DOI: 10.1109/JPROC.
2014.2371999.

[87] KubeEdge. Kubernetes Native Edge Computing Framework. https://kubeedge.
io/en/.2021.

[88] Kubernetes. API Server. https://kubernetes.io/docs/concepts/overview/
kubernetes-api/. 2022.

[89] Kubernetes. Cluster Networking. https: //kubernetes.io/docs/concepts/
cluster-administration/networking/. 2021.

[90] Kubernetes. Custom Resources. https : //kubernetes . io/docs/concepts /
extend-kubernetes/api-extension/custom-resources/. 2022.

[91] Kubernetes. Device Plugin Framework. https ://github . com/kubernetes/
community /blob/master / contributors/design - proposals / resource -
management/device-plugin.md. 2022.

[92] Kubernetes. Network Policies. https : / / kubernetes . io/docs / concepts /
services-networking/network-policies/. 2022.

[93] Kubernetes. Operator Pattern. https : //kubernetes . io/docs/ concepts /
extend-kubernetes/operator/. 2022.

[94] Kubernetes. Production-Grade Container Orchestration. https://kubernetes.
io/.2022.

[95] Kubernetes. Scheduler performance tuning. https : //kubernetes . io/docs/
concepts/scheduling-eviction/scheduler-perf-tuning/. 2022.

[96] Kubernetes. Services. https://kubernetes.io/docs/concepts/services-
networking/service/. 2022.

[97] KVM. Kernel Virtual Machine. https://www.linux-kvm.org/. 2022.

[98] Leslie Lamport. “The Part-time Parliament”. In: ACM Transactions on Com-
puter Systems 16.2 (1998), pp. 133-169. DOI: 10.1145/279227 . 279229.

[99] Leslie Lamport. “Time, Clocks, and the Ordering of Events in a Distributed
System”. In: Communications of the ACM 21.7 (1978), pp. 558-565. DOI: 10 .
1145/359545.359563.

[100] Leslie Lamport, Robert Shostak, and Marshall Pease. “The Byzantine Gener-
als Problem”. In: ACM Transactions on Programming Languages and Systems 4.3
(1982), pp. 382—401. DOT: 10.1145/357172.357176.

[101] Edward A. Lee et al. “Modeling and Simulating Cyber-Physical Systems us-
ing CyPhySim”. In: Proc. International Conference on Embedded Software (EM-
SOFT). 2015, pp. 115-124. DOI: 10.1109/EMSOFT. 2015 . 7318266.

[102] Philip Levis et al. “TOSSIM: Accurate and Scalable Simulation of Entire TinyOS
Applications”. In: Proc. st International Conference on Embedded Networked Sen-
sor Systems (SenSys). 2003, pp. 126-137. DOI: 10.1145/958491.958506.

[103] Bo Li et al. “Realistic Case Studies of Wireless Structural Control”. In: Proc.
ACMY/IEEE International Conference on Cyber-Physical Systems (ICCPS). 2013,
pp- 179-188. DOI: 10.1145/2502524 . 2502549.

https://doi.org/10.1109/SIES.2018.8442098
https://doi.org/10.1145/2994374.2994397
https://doi.org/10.1145/2994374.2994397
https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1109/JPROC.2014.2371999
https://kubeedge.io/en/
https://kubeedge.io/en/
https://kubernetes.io/docs/concepts/overview/kubernetes-api/
https://kubernetes.io/docs/concepts/overview/kubernetes-api/
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/resource-management/device-plugin.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/resource-management/device-plugin.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/resource-management/device-plugin.md
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduler-perf-tuning/
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduler-perf-tuning/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://www.linux-kvm.org/
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/357172.357176
https://doi.org/10.1109/EMSOFT.2015.7318266
https://doi.org/10.1145/958491.958506
https://doi.org/10.1145/2502524.2502549

Bibliography 116

[104]

[105]

[106]

[107]

[108]

[109]

[110]
[111]

[112]
[113]
[114]
[115]
[116]

[117]
[118]

[119]

[120]

[121]

[122]

[123]

[124]

Linux Foundation. PREEMPT_RT patch. https://wiki . linuxfoundation.
org/realtime/. 2022.

Barbara Liskov and Robert Scheifler. “Guardians and Actions: Linguistic Sup-
port for Robust, Distributed Programs”. In: ACM Transactions on Programming
Languages and Systems 5.3 (1983), pp. 381-404. DOI: 10.1145/2166.357215.
Peng Liu, Dale Willis, and Suman Banerjee. “ParaDrop: Enabling Lightweight
Multi-tenancy at the Network’s Extreme Edge”. In: Proc. IEEE/ACM Sympo-
sium on Edge Computing (SEC). 2016, pp. 1-13. DOI: 10.1109/SEC.2016. 39.
Renju Liu and Mani Srivastava. “PROTC: PROTeCting Drone’s Peripherals
Through ARM TrustZone”. In: Proc. Workshop on Micro Aerial Vehicle Networks,
Systems, and Applications (DroNet). 2017. DOI: 10.1145/3086439.3086443.
Tianyuan Liu et al. “AliDrone: Enabling Trustworthy Proof-of-Alibi for Com-
mercial Drone Compliance”. In: Proc. 38th IEEE International Conference on
Distributed Computing Systems (ICDCS). 2018, pp. 841-852. DOIL: 10 . 1109/
ICDCS.2018.00086.

Mariano I. Lizarraga et al. “Simulink Based Hardware-in-the-Loop Simulator
for Rapid Prototyping of UAV Control Algorithms”. In: Proc. AIAA Infotech
Conference. 2009. DOI: 10.2514/6.2009-1843.

LXD. Linux system-level containers. https://linuxcontainers.org/1xd/.
Markets and Markets. Unmanned Aerial Vehicle (UAV) Market. https://www.
marketsandmarkets . com/Market - Reports /unmanned - aerial - vehicles -
uav-market-662.html. Accessed: 2019-01-10. 2021.

MAVLink. Drone communication protocol. https://mavlink.io/en. 2022.
MAVProxy. UAV ground station software package for MAVLink based systems.
http://ardupilot.github.io/MAVProxy/html/index.html. 2022.
MAVROS. MAV Link extendable communication node for ROS with proxy for Ground
Control Station. http://wiki.ros.org/mavros. 2022.

MAVSDK. SDK for MAVLink. https://www.dronecode.org/sdk/. 2022.
Microsoft. Flight Simulator. https://wuw.flightsimulator.com/.

mongoDB. NoSQL database. https://www.mongodb. com/. 2022.

Susan Morrow. Privacy and Security Issues with Drones. Ed. by Infosec Re-
sources. https://resources.infosecinstitute.com/privacy-and-security-
issues-with-drones/ (2019-04-23).

Seyed Hossein Mortazavi et al. “CloudPath: A Multi-Tier Cloud Computing
Framework”. In: Proc. ACM/IEEE Symposium on Edge Computing (SEC). 2017,
pp- 1-13. DOI: 10.1145/3132211.3134464.

Malek Murisonon. Drones Will Be Shot Down Until These Misconceptions Are
Tackled. Ed. by Drone Life. https://dronelife.com/2019/03/04/drones-
will-be-shot-down-until-these-misconceptions-are-tackled/ (2019-
03-04).

NASA. Unmanned Aircraft System (UAS) Traffic Management (UTM). https :
//utm.arc.nasa.gov/index.shtml.

Bruce Jay Nelson. “Remote Procedure Call”. Rep. CMU-CS-81-119. PhD the-
sis. Department of Computer Science, Carnegie-Mellon University, 1981.
Brian M. Oki and Barbara Liskov. “Viewstamped Replication: A New Pri-
mary Copy Method to Support Highly-Available Distributed Systems”. In:
Proc. 7th ACM Symposium on Principles of Distributed Computing (PODC). 1988,
pp- 8-17. DOI: 10.1145/62546 . 62549.

Fredrik Osterlind et al. “Cross-Level Sensor Network Simulation with COOJA”.
In: Proc. 31st IEEE Conference on Local Computer Networks (LCN). 2006, pp. 641-
648. DOI: 10.1109/LCN.2006.322172.

https://wiki.linuxfoundation.org/realtime/
https://wiki.linuxfoundation.org/realtime/
https://doi.org/10.1145/2166.357215
https://doi.org/10.1109/SEC.2016.39
https://doi.org/10.1145/3086439.3086443
https://doi.org/10.1109/ICDCS.2018.00086
https://doi.org/10.1109/ICDCS.2018.00086
https://doi.org/10.2514/6.2009-1843
https://linuxcontainers.org/lxd/
https://www.marketsandmarkets.com/Market-Reports/unmanned-aerial-vehicles-uav-market-662.html
https://www.marketsandmarkets.com/Market-Reports/unmanned-aerial-vehicles-uav-market-662.html
https://www.marketsandmarkets.com/Market-Reports/unmanned-aerial-vehicles-uav-market-662.html
https://mavlink.io/en
http://ardupilot.github.io/MAVProxy/html/index.html
http://wiki.ros.org/mavros
https://www.dronecode.org/sdk/
https://www.flightsimulator.com/
https://www.mongodb.com/
https://resources.infosecinstitute.com/privacy-and-security-issues-with-drones/
https://resources.infosecinstitute.com/privacy-and-security-issues-with-drones/
https://doi.org/10.1145/3132211.3134464
https://dronelife.com/2019/03/04/drones-will-be-shot-down-until-these-misconceptions-are-tackled/
https://dronelife.com/2019/03/04/drones-will-be-shot-down-until-these-misconceptions-are-tackled/
https://utm.arc.nasa.gov/index.shtml
https://utm.arc.nasa.gov/index.shtml
https://doi.org/10.1145/62546.62549
https://doi.org/10.1109/LCN.2006.322172

Bibliography 117

[125] Lynne Parker. “ALLIANCE: An Architecture for Fault Tolerant Multirobot
Cooperation”. In: IEEE Transactions on Robotics and Automation 14.2 (1998),
pp. 220-240. DOL: 10.1109/70.681242.

[126] Eugenio Pasqua. The Leading 5G IoT Use Cases. https://iot-analytics.com/
the-leading-5g-iot-use-cases-2019/. Accessed: 2019-04-20. 2019.

[127] Marshall Pease, Robert Shostak, and Leslie Lamport. “Reaching Agreement
in the Presence of Faults”. In: Journal of the ACM 27.2 (1980), pp. 228-234. DOL:
10.1145/322186.322188.

[128] Jérome Petazzoni. Build reliable, traceable, distributed systems with ZeroMQ. https:
//us.pycon.org/2012/schedule/presentation/260/.2022.

[129] picamera. Pure Python interface to the Raspberry Pi camera module. https://
github.com/waveform80/picamera. 2022.

[130] Carlo Pinciroli and Giovanni Beltrame. “Buzz: An extensible programming
language for heterogeneous swarm robotics”. In: Proc. 2016 IEEE/RS] Interna-
tional Conference on Intelligent Robots and Systems (IROS). 2016, pp. 3794-3800.
DOI: 10.1109/iros.2016.7759558.

[131] Gazebo static map plugin. Ground plane model with satellite images. http://
gazebosim.org/tutorials?tut=static_map_plugin. 2022.

[132] Antén Romén Portabales and Martin Loépez Nores. “Dockemu: Extension
of a Scalable Network Simulation Framework based on Docker and NS3 to
Cover IoT Scenarios”. In: Proc. International Conference on Simulation and Mod-
eling Methodologies, Technologies and Applications (SIMULTECH). 2018, 175—
182. DOI: 10.5220/0006913601750182.

[133] Randy R. Price. How to estimate the maximum and recommended flight times of
a UAS UAV or Drone System. Tech. rep. 3469. LSU AgCenter, Jan. 2016. URL:
https://www.lsuagcenter.com/portals/communications/publications/
publications_catalog/crops_livestock/how-to-estimate-the-maximum-
and-recommended-flight-times-of-a-uas-uav-or-drone-system.

[134] Claudius Ptolemaeus, ed. System Design, Modeling, and Simulation using Ptolemy
II. Ptolemy.org, 2014. URL: \url{http://ptolemy.org/books/Systems}.

[135] PV-Auto-Scout Project. Integrated system for the automated inspection of photo-
voltaic parks using IR-thermography via autonomous aerial vehicles (drones). http:
//www.pvautoscout.com/. 2022.

[136] Pymavlink. MAVLink protocol C/C++ implementation. https://github.com/
mavlink/c_library_v1.2022.

[137] Pymavlink. Python implementation of the MAV Link protocol. https://github.
com/ArduPilot/pymavlink. 2022.

[138] Pyro. Full-featured Ground Station Application for the ArduPilot Open Source Au-
topilot Project. https://ardupilot.org/planner/. 2022.

[139] Pyro. Python Remote Objects. https://pyro4.readthedocs.io/en/stable/.
2022.

[140] QGroundControl. Intuitive and Powerful Ground Control Station for the MAV Link
protocol. http://qgroundcontrol.com/. 2022.

[141] Michael O. Rabin. “Randomized Byzantine Generals”. In: Proc. 24th Annual
Symposium on Foundations of Computer Science (SFCS). 1983, pp. 403-409. DOTI:
10.1109/SFCS.1983.48.

[142] Sampath Rangarajan, Sachin Garg, and Yennun Huang. “Checkpoints-on-
Demand with Active Replication”. In: Proc. 7th IEEE Symposium on Reliable
Distributed Systems (RELDIS). 1988, pp. 75-83. DOI: 10.1109/RELDIS. 1998.
T40477.

https://doi.org/10.1109/70.681242
https://iot-analytics.com/the-leading-5g-iot-use-cases-2019/
https://iot-analytics.com/the-leading-5g-iot-use-cases-2019/
https://doi.org/10.1145/322186.322188
https://us.pycon.org/2012/schedule/presentation/260/
https://us.pycon.org/2012/schedule/presentation/260/
https://github.com/waveform80/picamera
https://github.com/waveform80/picamera
https://doi.org/10.1109/iros.2016.7759558
http://gazebosim.org/tutorials?tut=static_map_plugin
http://gazebosim.org/tutorials?tut=static_map_plugin
https://doi.org/10.5220/0006913601750182
https://www.lsuagcenter.com/portals/communications/publications/publications_catalog/crops_livestock/how-to-estimate-the-maximum-and-recommended-flight-times-of-a-uas-uav-or-drone-system
https://www.lsuagcenter.com/portals/communications/publications/publications_catalog/crops_livestock/how-to-estimate-the-maximum-and-recommended-flight-times-of-a-uas-uav-or-drone-system
https://www.lsuagcenter.com/portals/communications/publications/publications_catalog/crops_livestock/how-to-estimate-the-maximum-and-recommended-flight-times-of-a-uas-uav-or-drone-system
\url{http://ptolemy.org/books/Systems}
http://www.pvautoscout.com/
http://www.pvautoscout.com/
https://github.com/mavlink/c_library_v1
https://github.com/mavlink/c_library_v1
https://github.com/ArduPilot/pymavlink
https://github.com/ArduPilot/pymavlink
https://ardupilot.org/planner/
https://pyro4.readthedocs.io/en/stable/
http://qgroundcontrol.com/
https://doi.org/10.1109/SFCS.1983.48
https://doi.org/10.1109/RELDIS.1998.740477
https://doi.org/10.1109/RELDIS.1998.740477

Bibliography 118

[143] Steven Rasmussen et al. “A Multiple UAV Simulation for Researchers”. In:
Proc. Modeling and Simulation Technologies Conference and Exhibit. 2003, pp. 11—
18. DOI: 10.2514/6.2003-5684.

[144] Raspberry Pi. Camera Module v2. https://wuw.raspberrypi.org/products/
camera-module-v2/.2022.

[145] Raspberry Pi 3 Model B. Third-generation single-board computer. https://www.
raspberrypi.org/products/raspberry-pi-3-model-b/. 2022.

[146] RAWEFIE Project. Road-, Air-, and Water- based Future Internet Experimentation.
http://www.rawfie.eu/. 2022.

[147] George F. Riley and Thomas R. Henderson. “The ns-3 Network Simulator”.
In: Modeling and Tools for Network Simulation. Springer, 2010, pp. 15-34. DOL:
10.1007/978-3-642-12331-3_2.

[148] Ronald L. Rivest, Adi Shamir, and Leonard Adleman. “A Method for Obtain-
ing Digital Signatures and Public-key Cryptosystems”. In: Communications of
the ACM 21.2 (1978), pp. 120-126. DOI: 10.1145/359340.359342.

[149] ROS. Robot Operating System. https://wuw.ros.org. 2022.

[150] Davide L. Russell. “State Restoration in Systems of Communicating Processes”.
In: IEEE Transactions on Software Engineering SE-6.2 (1980), pp. 183-194. DOI:
10.1109/TSE. 1980.230469.

[151] Erol Sahin. “Swarm Robotics: From Sources of Inspiration to Domains of Ap-
plication”. In: Swarm Robotics (SR). Springer, 2005, pp. 10-20. DOI: 10. 1007/
978-3-540-30552-1_2.

[152] Rafael C. B. Sampaio et al. “FVMS: A Novel SiL Approach on the Evaluation
of Controllers for Autonomous MAV”. In: Proc. IEEE Aerospace Conference.
2013, pp. 1-8. DOI: 10.1109/AER0. 2013 . 6497415.

[153] M. Satyanarayanan. “Pervasive Computing: Vision and Challenges”. In: IEEE
Personal Communications 8.4 (2001), pp. 10-17. DOI: 10.1109/98.943998.

[154] Mahadev Satyanarayanan et al. “The Case for VM-Based Cloudlets in Mo-
bile Computing”. In: IEEE Pervasive Computing 8.4 (2009), pp. 14-23. DOI:
10.1109/MPRV.2009.82.

[155] Fred B. Schneider. “Implementing Fault-Tolerant Services Using the State
Machine Approach: A Tutorial”. In: ACM Computing Surveys 22.4 (1990), pp. 299-
319. DOI: 10.1145/98163.98167.

[156] Henning Schulzrinne. The smart city is more than 5G — Creating a flexible, het-
erogeneous and programmable IoT infrastructure. https://smartcity360.eai-
conferences . org/2020/ speaker /henning - schulzrinne/ (accessed: 2021-
04-01). Keynote Speech at EAI SmartCity360 International Convention 2020.
2020.

[157] senseFly. Drone Case Studies. https://www.sensefly.com/industries/case-
studies. Accessed: 2019-01-10. 2021.

[158] SESAR. U-Space. https://wuw.sesarju.eu/U-space.

[159] Shital Shah et al. “AirSim: High-Fidelity Visual and Physical Simulation for
Autonomous Vehicles”. In: Field and Service Robotics. Vol. 5. Springer, 2017.
DOI: 10.1007/978-3-319-67361-5_40. eprint: arXiv:1705.05065.

[160] Cong Shi et al. “Serendipity: Enabling Remote Computing among Intermit-
tently Connected Mobile Devices”. In: Proc. 13th ACM International Sympo-
sium on Mobile Ad Hoc Networking and Computing (MobiHoc). 2012, pp. 145-
154. DOI: 10.1145/2248371.2248394.

[161] Russ Smith. ODE - Open Dynamics Engine. https://www.ode.org/. 2022.

https://doi.org/10.2514/6.2003-5684
https://www.raspberrypi.org/products/camera-module-v2/
https://www.raspberrypi.org/products/camera-module-v2/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
http://www.rawfie.eu/
https://doi.org/10.1007/978-3-642-12331-3_2
https://doi.org/10.1145/359340.359342
https://www.ros.org
https://doi.org/10.1109/TSE.1980.230469
https://doi.org/10.1007/978-3-540-30552-1_2
https://doi.org/10.1007/978-3-540-30552-1_2
https://doi.org/10.1109/AERO.2013.6497415
https://doi.org/10.1109/98.943998
https://doi.org/10.1109/MPRV.2009.82
https://doi.org/10.1145/98163.98167
https://smartcity360.eai-conferences.org/2020/speaker/henning-schulzrinne/
https://smartcity360.eai-conferences.org/2020/speaker/henning-schulzrinne/
https://www.sensefly.com/industries/case-studies
https://www.sensefly.com/industries/case-studies
https://www.sesarju.eu/U-space
https://doi.org/10.1007/978-3-319-67361-5_40
arXiv:1705.05065
https://doi.org/10.1145/2248371.2248394
https://www.ode.org/

Bibliography 119

[162] Yunmok Son et al. “Rocking Drones with Intentional Sound Noise on Gy-
roscopic Sensors”. In: Proc. 24th USENIX Conference on Security Symposium
(SEC). 2015, 881—896. 1SBN: 978-1-939133-11-3.

[163] Jing Su et al. “Haggle: Seamless Networking for Mobile Applications”. In:
UbiComp 2007: Ubiquitous Computing. Springer, 2007, pp. 391-408. DOTI: 10.
1007/978-3-540-74853-3_23.

[164] Ogre3D team. OGRE - Open-source graphics rendering engine. https : //www .
ogre3d.org/. 2022.

[165] Thales Group. Low Altitude Airspace Management (LAAM) platform. https :
/ /www . thalesgroup . com/en/australia/press - release/thales - and -
telstra- join-forces-unlock-potential-low-altitude-airspace (2019-
01-03).

[166]]. Timmis et al. “An Immune-Inspired Swarm Aggregation Algorithm for
Self-Healing Swarm Robotic Systems”. In: Biosystems 146 (2016), pp. 60-76.
DOI: 10.1016/j.biosystems.2016.04.001.

[167] TOSCA. OASIS Topology and Orchestration Specification for Cloud Applications.
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
(accessed: 2021-04-01). 2022.

[168] V5 nano. CUAV AutoPilot. http://doc.cuav.net/flight-controller/v5-
autopilot/en/v5-nano.html. 2022.

[169] Alexander Van’'t Hof and Jason Nieh. “AnDrone: Virtual Drone Computing
in the Cloud”. In: Proc. 14th EuroSys Conference. 2019, 6:1-6:16. DOI: 10.1145/
3302424 .3303969.

[170] Edwin Vattapparamban et al. “Drones for Smart Cities: Issues in Cyberse-
curity, Privacy, and Public Safety”. In: Proc. International Wireless Communi-
cations and Mobile Computing Conference (IWCMC). 2016, pp. 216-221. DOI:
10.1109/IWCMC.2016.7577060.

[171] Richard Vaughan. “Massively Multi-Robot Simulation in Stage”. In: Swarm
Intelligence 2.2-4 (2008), pp. 189-208. DOI: 10.1007/s11721-008-0014-4.

[172] Bas Vergouw et al. “Drone Technology: Types, Payloads, Applications, Fre-
quency Spectrum Issues and Future Developments”. In: Information Technol-
ogy and Law Series. TM.C. Asser Press, 2016, pp. 21-45. DOI: 10.1007/978-
94-6265-132-6_2.

[173] Shane Schick (Verizon). Will 5G replace Wi-Fi? https://enterprise.verizon.
com/resources/articles/s/will-5g-replace-wifi/ (accessed: 2021-04-
01). 2021.

[174] Giuliana S. Veronese et al. “Efficient Byzantine Fault-Tolerance”. In: IEEE
Transactions on Computers 62.1 (2013), pp. 16-30. DOI: 10.1109/TC.2011.221.

[175] Tomas Vogeltanz and Roman Jasek. “JSBSim library for flight dynamics mod-
elling of a mini-UAV”. In: AIP Conference Proceedings 1648.1 (2015), p. 550015.
DOI: 10.1063/1.4912770.

[176] M. Wiesmann et al. “Understanding Replication in Databases and Distributed
Systems”. In: Proc. 20th IEEE International Conference on Distributed Computing
Systems (ICDCS). 2000, pp. 464-474. DOIL: 10.1109/ICDCS. 2000 . 840959.

[177] David Wright and Rachel Finn. “Making Drones More Acceptable with Pri-
vacy Impact Assessments”. In: The Future of Drone Use. Vol. 27. TM.C. Asser
Press, 2016, pp. 325-351. DOI: 10.1007/978-94-6265-132-6_17.

[178] Justin Yapp, Remzi Seker, and Radu Babiceanu. “UAV as a Service: Enabling
On-demand Access and on-the-fly Re-tasking of Multi-tenant UAVs Using
Cloud Services”. In: Proc. IEEE/AIAA Digital Avionics Systems Conference (DASC).
2016. DOI: 10.1109/DASC.2016.7778007.

https://doi.org/10.1007/978-3-540-74853-3_23
https://doi.org/10.1007/978-3-540-74853-3_23
https://www.ogre3d.org/
https://www.ogre3d.org/
https://www.thalesgroup.com/en/australia/press-release/thales-and-telstra-join-forces-unlock-potential-low-altitude-airspace
https://www.thalesgroup.com/en/australia/press-release/thales-and-telstra-join-forces-unlock-potential-low-altitude-airspace
https://www.thalesgroup.com/en/australia/press-release/thales-and-telstra-join-forces-unlock-potential-low-altitude-airspace
https://doi.org/10.1016/j.biosystems.2016.04.001
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
http://doc.cuav.net/flight-controller/v5-autopilot/en/v5-nano.html
http://doc.cuav.net/flight-controller/v5-autopilot/en/v5-nano.html
https://doi.org/10.1145/3302424.3303969
https://doi.org/10.1145/3302424.3303969
https://doi.org/10.1109/IWCMC.2016.7577060
https://doi.org/10.1007/s11721-008-0014-4
https://doi.org/10.1007/978-94-6265-132-6_2
https://doi.org/10.1007/978-94-6265-132-6_2
https://enterprise.verizon.com/resources/articles/s/will-5g-replace-wifi/
https://enterprise.verizon.com/resources/articles/s/will-5g-replace-wifi/
https://doi.org/10.1109/TC.2011.221
https://doi.org/10.1063/1.4912770
https://doi.org/10.1109/ICDCS.2000.840959
https://doi.org/10.1007/978-94-6265-132-6_17
https://doi.org/10.1109/DASC.2016.7778007

Bibliography 120

[179] Man-Ki Yoon et al. “VirtualDrone: Virtual Sensing, Actuation, and Communi-
cation for Attack-resilient Unmanned Aerial Systems”. In: Proc. 8th ACM/IEEE
International Conference on Cyber-Physical Systems (ICCPS). 2017, pp. 143-154.
DOI: 10.1145/3055004 .3055010.

[180] ZeroMQ. Open-source messaging library. https://zeromq.org/. 2022.

[181] H. Zhang et al. “Network Slicing Based 5G and Future Mobile Networks:
Mobility, Resource Management, and Challenges”. In: IEEE Communications
Magazine 55.8 (2017), pp. 138-145. DOI: 10.1109/MCOM. 2017 . 1600940.

[182] Long Zhang et al. “A Survey on 5G Millimeter Wave Communications for
UAV-Assisted Wireless Networks”. In: IEEE Access 7 (2019), pp. 117460-117504.
DOI: 10.1109/ACCESS.2019.2929241.

https://doi.org/10.1145/3055004.3055010
https://zeromq.org/
https://doi.org/10.1109/MCOM.2017.1600940
https://doi.org/10.1109/ACCESS.2019.2929241

	Declaration of Authorship
	Abstract
	Περίληψη
	Acknowledgements
	Publications
	Introduction
	Motivation and Problem Statement
	Contributions
	Fault tolerance techniques in coordinated drone missions
	Managed operation, testing and integration of drone applications

	Thesis Outline

	Experimental Tools
	Introduction and Outline
	Hardware Testbed
	Simulation Environment
	Provided functionality

	Conclusion

	I Fault Tolerance Techniques in Coordinated Drone Missions
	Tolerance of Fail-Stop Failures Using Active Replication
	Contributions and Outline
	System Model
	Fault Tolerance Mechanisms
	Replication properties
	Node failures
	Replica failures
	Garbage collection of log entries

	Implementation
	Evaluation
	Experimental setup
	Service call delay in deterministic execution

	Tolerance of Byzantine Failures
	Contributions and Outline
	System Model
	Byzantine Fault Tolerance Mechanisms
	Fault tolerance properties
	Basic service invocation
	Fault-free operation
	Node failures

	Evaluation
	Experimental setup
	Basic costs
	Node invocation overhead
	Results discussion

	Related Work
	Tolerance of Fail-Stop Failures
	Byzantine Fault Tolerance
	Fault Tolerance in Robotic Systems

	II Managed Operation, Testing and Integration of Drone Applications
	Flexible Deployment and Safe Operation of Drone Applications
	Contributions and Outline
	Concept
	Objectives
	Main entities and stakeholders

	Simulation and Digital Twin Approach
	Overview
	Digital twin for application checking at runtime

	Implementation
	Platform as a service system
	Drone environment

	Simulation and Digital Twin

	Evaluation
	Offline simulation experiments

	Orchestration of Distributed Drone-Edge-Cloud Applications
	Contributions and Outline
	Motivation and Concept
	Fractus Overview
	Resource Descriptions
	Policy descriptions
	Application and component descriptions

	Network and Application Flow Management
	Access of Sensor and Mobility Services
	Implementation
	Evaluation
	Field experiments
	Simulation experiments

	Related Work
	Edge-related Application Architectures & Orchestration
	Edge computing platforms
	Drone-specific platforms
	Network management

	Testing of Drone Applications
	Drone simulators
	Assessment of cyber-physical systems

	Conclusions and Outlook
	Summary
	Future Work

	Bibliography

