
Adaptive Deployment of Application-level
Sensing and Data Processing Pipelines in a

Wireless Network of Embedded Devices

Giorgos Polychronis1, Manos Koutsoubelias1, Foivos Pournaropoulos1,
Spyros Lalis1, Lefteris Georgiadis2, Thomas Pazios2, Stratos Tsatsaronis2, and

Isaias Vrakidis2

1 Electrical and Computer Engineering Department
University of Thessaly

Volos, Greece
{gpolychronis, emkouts, spournar, lalis}@uth.gr

2 Department of Research & Development
METIS Cybertechnology

Athens Greece
{lefteris.georgiadis, thomas.pazios,

stratos.tsatsaronis, isaias.vrakidis}@metis.tech

Abstract. Most IoT devices are nowadays equipped with computing
resources so that – besides acting as plain sensor nodes – they can also
perform local data processing, aggregation and filtering, before data is
forwarded upstream to more powerful servers. In this paper, we present
a framework for the flexible and adaptive deployment of application-
level sensing and data processing pipelines in a network of such wireless
sensor embedded nodes. The system administrator merely provides a
high-level, declarative description of the services to be deployed. Based
on this input, a helper facility performs a mapping of the specified ap-
plication services to nodes so as to reduce the wireless network traffic.
Furthermore, the service-to-node mapping can be adapted at runtime to
handle changes in system configuration. We evaluate our approach for
an indicative node topology and different application processing pipeline
configurations. Our results show that such an optimized deployment can
reduce wireless traffic by up to 51% vs a centralized placement, while the
ability to adapt the placement of the data processing pipeline to system
configuration changes can achieve up to 3.6x savings vs a static deploy-
ment that was optimal for a previous system configuration. Also, such
adaptations can be performed fast, within a few tens of seconds.

Keywords: IoT · Wireless Sensor Networks · In-Network Processing ·
Edge Computing · Application Service Deployment · Adaptation.

1 Introduction

The continued advances in embedded computing platforms and short-range wire-
less communication technologies have enabled the development of wireless de-
vices, which can be flexibly deployed in different kinds of infrastructures and can

2 G. Polychronis et al.

support a wide range of sensing applications, giving rise to the so-called Internet
of Things (IoT). While the main purpose of such devices is typically to collect
measurements through a variety of sensors, most of them also have sufficient
computing resources to process data locally, in the spirit of edge computing,
before forwarding it to more powerful servers or the cloud.

The ability to process data directly on the sensor nodes, becomes even more
important when such data is propagated over wireless links. In this case, sup-
port for in-network processing to perform aggregation and filtering is crucial
to minimize the wireless traffic and increase the robustness of communication
over low-bandwidth links. To achieve this, however, one must have a suitable
placement of the data processing logic, depending on the location of the nodes
that produce the raw data. Moreover, any static placement may turn out to be
sub-optimal if the system configuration changes. Therefore, it is also important
to be able to adapt the current deployment at runtime.

In this paper, we present support for such a flexible and adaptive deployment
for an industrial-strength IoT system targeting the shipping domain. Our work
has the following distinctive characteristics. First, it supports the deployment
of entire pipelines of application-level data processing tasks on the wireless IoT
nodes. Secondly, the placement of the individual data processing tasks can be
adapted at runtime. Thirdly, deployment and adaptation can be performed au-
tomatically, without manual commands from the system administrator, based
on high-level declarative descriptions.

The main contributions of our work are: (i) We present a complete framework
for the flexible and adaptive deployment of application-level data processing
pipelines in IoT systems. (ii) The desired deployment is captured in a declarative
way, through suitable descriptions based on which the necessary actions are
performed in an automated way. (iii) We evaluate the benefits of such flexible
and adaptive deployment for various system configurations, showing that it can
significantly reduce wireless traffic vs fully centralized or static deployments,
with only a short downtime for the application due to the adaptation phase.

The rest of the paper is structured as follows. Section 2 provides an overview
of the IoT system we target in our work, based on a concrete use-case from
the shipping domain, and the available system support for the deployment of
application-level sensing and data processing tasks on the wireless embedded
nodes. Section 3 presents our approach for the flexible and adaptive deployment
of application services in the IoT system, with minimal input from the admin-
istrator. Section 4 presents an evaluation of the proposed approach. Section 5
gives an overview of related work. Finally, Section 6 concludes the paper.

2 System Overview

This section provides an overview of the system we target in our work. We start
by describing the physical system infrastructure. Then, we explain how sens-
ing and data processing functionality is achieved by combining smaller applica-
tion services into more complex data processing pipelines. Finally, we discuss

Adaptive Deployment of Application Processing Pipelines 3

the core underlying system-level support for deploying and interconnecting such
application-level services in the system.

2.1 Embedded nodes & wireless network

We target IoT systems comprising embedded devices used to collect information
from a potentially wide variety of sensors. We assume that these nodes are inter-
connected via short-range wireless links in a multi-hop network that is deployed
on the site of interest. As a concrete case, we consider a wireless sensor network
installed on a vessel for monitoring and analyzing its status, including, e.g., en-
gine operation, speed, fuel consumption, sea state, etc. We note that METIS
already operates such systems in numerous vessels worldwide.

Fig. 1: Flexible deployment and execution of application services on the embed-
ded nodes of the IoT system. Rectangles and ovals denote distinct sensor and
processing services, respectively. The arrows between the application services
indicate the data flow of the respective pipelines.

Figure 1 illustrates an indicative system setup. The basic building block of the
system is the wireless intelligent collector (WIC), an industrial-strength device
approved for operation on commercial vessels. It has an embedded computing
board with different interfaces (such as RS-232, RS-485, CAN, etc) through
which it can be connected to and get data from a wide range of sensors.

In terms of networking, WICs feature an Ethernet and Zigbee interface. Zig-
bee is used to deploy and interconnect WICs at various locations on the vessel in
a fast and flexible way, without the need for any wiring (apart from being costly,
this also raises the issue of safety if cables need to cross isolated compartments).
The ZigBee network is managed by a coordinator WIC, while the rest act as
router nodes or end nodes that do not perform any data forwarding. The coor-
dinator WIC uses its Ethernet interface to connect to the so-called data fusion
server (DFS) on the ship via the ship’s local area network.

The DFS is where collected data is stored and possibly pre-processed, before
forwarding it to the cloud via satellite for further analysis, long-term storage
and integration with the ship owner’s ERP systems (not shown in the figure).
Note that stable Internet connectivity over satellite may not be available all
times, thus the DFS may need to store data for longer periods of time until

4 G. Polychronis et al.

this can be uploaded to the cloud. It is therefore important for the local IoT
system to operate autonomously and as efficiently as possible even when being
disconnected from the cloud.

2.2 Application services and data processing pipelines

To exploit the processing capacity of the embedded nodes, we depart from the
paradigm of monolithic applications and adopt a distributed application ap-
proach. More specifically, the application logic is split into smaller components,
referred to as services, which can be deployed on the available nodes (WICs), as
shown in Figure 1. We differentiate between two types of application services:
sensor and processing services (denoted in the figure as rectangles and ovals),
respectively. Sensor services access specific sensors connected to the embedded
nodes to collect measurements and forward them upstream, possibly after some
filtering. Processing services collect data produced by one or more sensor services
or other processing services to produce derivative, more complex information.

This makes it possible to build data processing pipelines that run in a dis-
tributed way on top of the IoT infrastructure. Two indicative examples are shown
in Figure 1. One pipeline consists of the green and blue sensor services running
on WIC2 and WIC3, and the yellow processing service running on WIC1, which
takes as input the values produced by those services to produce a higher-level
metric. The other pipeline includes the grey sensor service on WIC4 and the
orange processing service running on WIC3. Note that sensor services must run
directly on the nodes featuring the respective sensors. In contrast, a processing
service can run on any node that has sufficient computing resources to host it,
including the DFS. For instance, the orange data processing service could be
placed on WIC4 to reduce the amount of data sent over the wireless network.

The formation of data processing pipelines is done indirectly, based on so-
called quantity identifiers (QIDs) which uniquely associate data with specific
sensor types or metrics produced by the processing services, and additional in-
formation that is needed to properly interpret and process the data. More specif-
ically, instead of hard-wiring the components of a pipeline via explicit references
or addresses, application services are loosely coupled through producer-consumer
relationships captured via the respective QIDs.

For each application service, the information about the QIDs consumed and
produced, the logic for parsing and processing data, and any special resources
or parameter files required to run the service, is included in a corresponding
description. In turn, such descriptions are used to drive the deployment and
execution of application services on the embedded nodes.

2.3 Basic system-level support

The deployment of application services and the data exchange between them
based on QIDs is supported via system-level software running on the embedded
nodes (WICs) and the DFS. Figure 2 gives a high-level overview of the software
architecture, which is discussed in some more detail below.

Adaptive Deployment of Application Processing Pipelines 5

Fig. 2: High-level view of the system software architecture.

All interactions that occur in the system are supported via the middleware
running on the DFS and the WIC nodes. The middleware implements a pub/sub
transport layer, using a combination of ZeroMQ [2] and MQTT/MQTT-sn [1,15]
to support the local interaction between entities running on the same node and
the remote interaction between entities running on different nodes over Ether-
net/ZigBee, respectively. If a message that is produced by a local entity has
remote subscribers, the pub/sub layer will transparently forward it to the re-
spective node(s) and will deliver it to the proper subscriber. Note that the data
that is generated by application services flow from the WICs toward the DFS,
while requests for system-level operations travel in the reverse direction.

The configuration and control of remote nodes from the DFS is supported
by the WIC control tool (WicCtl). This works in a client-server fashion, in the
spirit of a simple remote shell, allowing the system administrator to send files
and run commands on one or more nodes over ZigBee. Among other things,
WicCtl is used to deploy application services on the nodes by sending the ser-
vice descriptions. The middleware on the WICs is responsible for handling such
control/configuration commands, in particular regarding the execution of ap-
plication services. More concretely, when a command is issued via WicCtl to
start a given application service, the middleware on the target node launches
a generic service execution process that runs the application logic according to
the respective description. Note that the application description must already
be available on the node (it can be pre-installed on the node, or sent to it over
the wireless network via a WicCtl file transfer command). Conversely, when the
runtime layer receives a request to stop an application service, it terminates the
corresponding execution process.

Furthermore, the middleware running on the DFS is configured to store the
data that is generated from the application services in a local database. From
there, it is uploaded to the cloud in an asynchronous way subject to satellite
connectivity (a separate system service is used for this, not shown in the figure).

3 Flexible & Adaptive Application Service Deployment

3.1 Targeted service deployment

Using WicCtl, the system administrator can deploy/start or stop/remove arbi-
trary application services on specific nodes at any point in time. However, this

6 G. Polychronis et al.

procedure can become quite awkward, especially if one wishes to deploy/remove
several services or some commands fail (e.g., due to network instability) and
have to be repeated.

(a) Addition of the Deployer facility on top
of the basic system software stack.

(b) Command sequence (via WicCtl) for
application service startup.

Fig. 3: Service deployment via the Deployer.

To simplify system management, we introduce the Deployer facility, shown
in Figure 3a, which performs the desired application service deployment based
on high-level directives/intents from the system administrator. The input is pro-
vided in the form of a json file, which contains the description of one or more
deployment operations. An indicative example is given in Listing 1, for the de-
ployment of a simple data processing pipeline consisting of a service that cal-
culates the specific fuel oil consumption (SFOC) of the vessel based on engine
power and fuel mass flow data produced by respective sensor services; note that
the QIDs capturing the producer-consumer relationships are part of the respec-
tive service descriptions (not shown for brevity). Each operation consists of the
desired action (deploy/start or stop/remove an application service), the service
name, the names of the respective description file, and the target node. In some
cases, besides the service description, additional files may need to be sent to
the node, e.g., describing special input configuration or sensor data parsing pa-
rameters for the service in question. The Deployer automatically extracts such
information by inspecting the service description and sends the respective files
to the node together with the main service description file.

The Deployer executes the specified operations sequentially, by issuing the
respective commands via WicCtl, as shown in Figure 3b. In case the node does
not respond, the Deployer retries the command a number of times (the upper
bound can be set by the administrator). If the failure persists, the operation
is aborted and the Deployer returns a corresponding negative result without

Adaptive Deployment of Application Processing Pipelines 7

Listing 1 Input file for deploying an indicative data processing pipeline. SFOC
(Specific Fuel Oil Consumption) service using data produced by the EnginePower
and FuelMassFlow services.

operations: [
{

serviceName: "EnginePower_svc"
serviceDescription: "EnginePower_svc_desc"
command: "start"
destination: "WIC-2"

},
{

serviceName: "FuelMassFlow_svc"
serviceDescription: "FuelMassFlow_svc_desc"
command: "start"
destination: "WIC-3"

},
{

serviceName: "SFOC_svc"
serviceDescription: "SFOC_svc_desc"
command: "start"
destination: "WIC-1"

}
]

proceeding to the next operation in the deployment description. Furthermore,
the Deployer explicitly confirms the success of the requested operation by re-
trieving relevant status information from the node, again via WicCtl. Based on
the outcome of the operations, the Deployer updates the current service deploy-
ment state for the entire system, i.e., the services hosted/running on each of the
nodes. In our implementation, this information is kept/updated in a special file
using a human-readable format so that it can be easily inspected by the system
administrator (as well as by other programs, as will be discussed in the sequel).

3.2 Flexible service mapping & deployment

Sensor services must be deployed on the nodes that feature the respective sen-
sors. These nodes are typically installed at very specific locations on the vessel
hence are well-known to the system administrator. Therefore, it is straightfor-
ward to specify them in the description passed to the Deployer, as done for the
EnginePower and FuelMassFlow services in Listing 1.

However, such restrictions do not apply to data processing services, such as
the SFOC service in Listing 1, which could be deployed on any node of the
system, provided it has sufficient resources. In this case, rather than having the
administrator specify a concrete node (as done in Listing 1), it can be desirable to
leave the target host open so that it can be selected automatically. Apart from re-
ducing the burden of the system administrator, this makes it possible to optimize
service placement in an automated way. Note that this can be hard/awkward
to do manually in case multiple application services are arranged in multi-stage
data processing pipelines that must be deployed and run concurrently in system
configurations with a large number of nodes.

8 G. Polychronis et al.

Fig. 4: Supporting flexible and adaptive service deployment via the Mapper.

This functionality is implemented through another facility, the Mapper, which
operates on top of the Deployer as shown in Figure 4. Like the Deployer, the
Mapper takes as input from the administrator a file describing the application
services to be deployed. The difference is that, in this case, the target hosts
of certain services can be left unspecified. The Mapper maps such non-anchored
services to the available system infrastructure by finding a suitable host for them.
Depending on the configuration, it can automatically implement the correspond-
ing deployment plan by invoking the Deployer, or simply return it as a proposal
to the system administrator.

3.3 Service mapping algorithm

The Mapper inspects the system description, service descriptions and current
service deployment. It uses this information to populate its internal data struc-
tures, which are subsequently used to compute the service-to-node mapping.
Table 1 and Table 2 summarize the information that is kept for each node and
service, respectively.

The s.svcProd and s.isProd fields are computed by matching the input
QIDs of s with the output QIDs of other services to find the respective producer-
consumer relationships. Namely, s.svcProd = {s′ : s.inQIDs∩s′.outQIDs ̸= ∅},
while s.isProd = ∃s′ : s.outQIDs ∩ s′.inQIDS ̸= ∅. The s.inRate field is com-
puted by summing-up the output rates of all services that produce data con-
sumed by s, taking into account the number of relevant QIDs. More formally,
s.inRate =

∑
s′∈s.svcProd s

′.outRate× |s.inQIDs ∩ s′.outQIDs|. Note that for
sensor services s.svcProd = ∅ and s.inRate = 0. The s.host field encodes the
host where service s is mapped. Note that some services may already have preas-
signed hosts (recall that the sensor services must be installed on specific nodes).
Such anchored services are ignored in the mapping operation, which only tries
to map services with s.host = NULL. At the end of the mapping operation, the
s.host field of each non-anchored service will be assigned a node value. Finally,
for each node n of the system, n.resAvlMap is used in the mapping operation
to capture the resources that can be used for the hosting of additional services.

Adaptive Deployment of Application Processing Pipelines 9

Table 1: Node information based on
the system and service descriptions.
Notation Description
n Node object.
n.id Node identifier.
n.resTot Total resource capacity

for hosting services.
n.resAlloc Resource capacity allo-

cated to hosted services.
n.parent Parent in the wireless

routing structure.
n.hops Number of wireless hops

to DFS.
n.resAvlMap Available resource capac-

ity for service mapping.

Table 2: Service information based on
the system and service descriptions.

Notation Description
s Service object.
s.id Service identifier.
s.resReq Resource capacity re-

quired to host s.
s.outQIDs QIDs for which s pro-

duces data.
s.inQIDs QIDs for which s con-

sumes data.
s.outRate Rate at which s outputs

data (msgs/sec).
s.svcProd Services that are data

producers for s.
s.isProd Whether s is a data pro-

ducer for other services.
s.inRate Aggregate input data

rate from all producers.
s.host Node where s is deployed

or mapped.

When the Mapper receives a set of services as input, let svcInput, it forms
the union of all services that are already deployed, let svcDeployed, and the
set of non-anchored services in svcInput which have to be mapped to a node
(s ∈ svcInput ∧ s.host = NULL), let svcToMap. It then verifies that the
requested mapping has no unresolved references. In other words, for each ser-
vice s ∈ svcToMap it is checked that all services acting as data producers
for it are already deployed or are part of the requested mapping: s.svcProd ⊆
svcDeployed ∪ svcInput. Then, the Mapper proceeds with the actual mapping
operation to find a suitable service-to-node mapping for the non-anchored ser-
vices in svcInput. The optimization objective, subject to resource constraints/re-
quirements, is to minimize the data traffic over the wireless network.

The heuristic for the mapping operation is given in Algorithm 1 in the form
of pseudocode. The top-level function is Map(). As a first step, the mapping
information is initialized and the services to be mapped are sorted according to
their input data rates (in descending order) via function SortByInputRate().
The rationale is to give priority to the services consuming/ingesting the largest
amount of data, hoping to map them on a host as close as possible to the respec-
tive data sources. Then, the algorithm incrementally maps each service to a node
(or the DFS). In each iteration, it invokes function FindFirstSvcCovered()
which scans the sorted list of unmapped services and returns the first service
(with the highest aggregate input rate) whose data producers are already de-
ployed or have been successfully mapped. Then, the best hosting option is found
for this service, via function FindMinTrafficCostHost(), and the resource

10 G. Polychronis et al.

Algorithm 1 Mapping non-anchored data processing services on nodes.
1: function Map(nodes, svcDeployed, svcInput)
2: svcMapped← {s ∈ svcInput : s.host ̸= NULL} ▷ anchored services
3: svcToMap← svcInput− svcMapped ▷ non-anchored services, to be mapped
4: for each n ∈ nodes do ▷ init service mapping info
5: n.resAvlMap← n.resTot− n.resAlloc
6: for each s ∈ svcMapped where s.host = n do
7: n.resAvlMap← n.resAvlMap− s.resReq
8: end for
9: end for

10: dfs.resAvlMap←∞ ▷ assume DFS has ample resources
11: svcToMapSorted← SortByInputRate(svcToMap)
12: while svcToMapSorted ̸= ∅ do
13: s← FirstSvcCovered(svcToMapSorted, svcDeployed ∪ svcMapped)
14: n← FindMinTrafficCostHost(nodes+ dfs, s)
15: s.host← n
16: n.resAvlMap← n.resAvlMap− s.resReq
17: svcMapped← svcMapped+ s
18: svcToMapSorted← svcToMapSorted− s
19: end while
20: end function

21: function FindFirstSvcCovered(svcToMapSorted, svcAvl)
22: for each s ∈ svcToMapSorted do
23: if s.svcProd ⊆ s.svcAvl then
24: return s
25: end if
26: end for
27: end function

28: function FindMinTrafficCostHost(nodes, s)
29: minCost,maxResAvl←∞, 0
30: for each n ∈ nodes where n.resAvlMap ≥ s.resReq do
31: cost← 0
32: for each s′ ∈ s.svcProd do
33: cost← cost+ OutputTrafficCost(s, n, s′)
34: end for
35: if ¬s.isProd then ▷ add output cost to DFS
36: cost← cost+ OutputTrafficCost(s, n,NULL)
37: end if
38: resAvl← n.resAvlMap− s.resReq
39: if cost < minCost ∨ (cost = minCost ∧ resAvl > maxResAvl) then
40: host,minCost,maxResAvl← n, cost, resAvl
41: end if
42: end for
43: return host
44: end function

45: function OutputTrafficCost(s, n, s′)
46: if s′ ̸= NULL then ▷ cost for data produced by s′ for s hosted on n
47: return s′.outRate× |s.inQIDs ∩ s′.outQIDs| × hops(n, s′.host)
48: else ▷ cost for data produced by s hosted on n to reach the DFS
49: return s.outRate× |s.outQIDs| × hops(n, dfs)
50: end if
51: end function

Adaptive Deployment of Application Processing Pipelines 11

availability of that node is updated accordingly. Note that the DFS is modeled
as a node with infinite resources, n.resAvl = ∞, so there will always be at least
one available node to host a service (in other words, it is guaranteed that the
mapping problem is not infeasible).

Function FindMinTrafficCostHost() finds the node n that has sufficient
available resource capacity to host the service in question while incurring the
lowest traffic cost over the wireless network. The traffic cost is calculated by
summing-up the data traffic caused by each service s′ that is a data producer
for s. In turn, this cost is calculated via OutputTrafficCost() by multiplying
the respective output rate s′.outRate by the number of QIDs consumed by s and
the number of hops between node n and the host of the data producer s′.host.
Moreover, if s does not serve as a data producer for another service, its own
output data traffic toward the DFS is added to the total cost. This is because
this data is not consumed by another service (running on a node in the wireless
sensor network) but simply ends-up in the main database on the DFS.

Notably, Map() returns a proposed deployment. To implement the suggested
deployment, the Mapper subsequently invokes the Deployer. This can be done
incrementally by invoking the Deployer separately for each service, or via a single
invocation passing as input the complete deployment plan.

3.4 Adapting the current service deployment

In addition to the initial flexible mapping and deployment of application services
on the nodes of the system, it can be desirable to adapt the current deployment
at runtime. For instance, new nodes may be added in the system that can be
used to host application services, the topology / routing structure of the wireless
network may change as a side effect of changing the placement of some nodes,
or certain services may change their data rates. Such changes may render the
current deployment sub-optimal.

The Mapper can be configured to support such adaptation. In this case, after
performing the initial deployment, it periodically checks the system description
to detect changes or it can be manually invoked by the administrator after
such changes occur. If any changes are detected, the Mapper re-computes a
new mapping of all processing services using the Map() function. Then, the
total data traffic over the wireless network for the current and new mapping is
calculated in the spirit of function OutputTrafficCost() in Algorithm 1, for
every producer-consumer service pair of the data processing pipelines.

Finally, the decision whether to actually implement the new mapping is taken
based on an improvement threshold that is set as a configuration parameter by
the system administrator. If the relative improvement of the new (planned) vs
the current service deployment exceeds this threshold, the Mapper proceeds
to implement the new mapping by invoking the Deployer. Alternatively, the
Mapper can be configured to suggest the adapted deployment to the system
administrator, who can examine the proposed mapping to decide whether to
adopt the proposal. In this case, the administrator can implement the respective
deployment, if desired, by invoking the Deployer manually.

12 G. Polychronis et al.

4 Evaluation

We evaluate the quality of service-to-node mapping produced by our algorithm
for different system configurations with several nodes and indicative data pro-
cessing pipelines. First, we describe the test configurations and some alternative
service mapping approaches which we use as benchmarks for our algorithm.
Then, we present and discuss the obtained results.

4.1 System configuration

We perform experiments for a system configuration with eleven embedded IoT
nodes, arranged in the topology shown in Figure 5a. We investigate the case
where the system administrator wishes to deploy two data processing pipelines.
Both have the same structure, shown in Figure 5b, but rely on different sensors
and corresponding sensor services.

(a) System topology.
(b) Structure of application
data processing pipelines.

Fig. 5: Experimental setup.

We explore three scenarios regarding the embedded nodes that feature the
sensors that are required by the sensor services, given in Table 3. Recall that sen-
sor services must be deployed on the nodes that have the corresponding sensors,
thus the location of sensors determines the placement/mapping of the respective
sensor services. Also, we investigate three scenarios for the data production rates
of the application data processing pipelines, given in Table 4.

Finally, we experiment with three different service hosting capacity scenar-
ios, assuming that each embedded node can host 2, 3 or 4 application services
(including the sensor services). As an exception, the DFS can host an unlimited
number of application services; for all practical purposes, it is considered to have
infinite service hosting capacity.

Adaptive Deployment of Application Processing Pipelines 13

Table 3: Sensor locations.
Sensors Nodes 1 Nodes 2 Nodes 3

1.1 R5 R4 ED3
1.2 ED1 R3 ED5
1.3 ED2 ED4 ED4
1.4 ED3 ED5 ED2
2.1 R3 ED2 R4
2.2 R4 R5 R3
2.3 ED4 ED1 R4
2.4 ED5 ED3 R5

Table 4: Data rates (msg/sec).
Services Rates A Rates B Rates C

X.1 1 0.25 1
X.2 0.25 0.25 1
X.3 1 1 1
X.4 0.25 1 1
X.5 1 0.25 0.25
X.6 0.25 1 0.25
X.7 0.25 0.25 0.25

4.2 Benchmarks

We compare our heuristic with the following benchmarks:

(1) Proximity: A data processing service is placed as close as possible to its
sources, by selecting hosts based on their average distance with the nodes
that run the respective producer services. Ties are broken by picking the
host closest to DFS.

(2) Optimal: Data processing services are mapped optimally on the nodes by
running an exhaustive search algorithm that checks all possible placement
options. This always produces the best possible solution.

(3) DFSonly: All data processing services are simply placed on the DFS. No
data processing takes place on the embedded nodes / in the wireless network.
This is used as a baseline for the results obtained via the proposed approach
and the rest of the benchmarks.

The metric of comparison is the aggregate data traffic generated over the wireless
network when running both processing pipelines concurrently. This is calculated
as explained in Section 3.4, on the service-to-node mapping produced by each
approach. In the following, all results are presented by reporting the relative
reduction of wireless message traffic vs DFSonly.

4.3 Benchmark comparison

In a first set of experiments, we compare our algorithm with the above bench-
marks for the deployment of the two application processing pipelines on the
system, for each of the 27 combinations of the sensor placement, production rate
and resource capacity scenarios. The results are shown in Figure 6. Each row
corresponds to a different sensor placement scenario in Table 3, while each col-
umn corresponds to a different data rate scenario in Table 4. The code at the top
left corner of each plot indicates the specific sensor placement / production rate
combination. In each case, the different resource capacity scenarios are shown
along the x-axis, while the y-axis shows the reduction of wireless traffic achieved
vs the DFSonly approach (higher is better). As it can be seen, the proposed

14 G. Polychronis et al.

Fig. 6: Reduction of wireless message traffic vs DFSonly. Each row (1, 2, 3)
corresponds to a different service placement scenario as per Table 3. Each column
(A, B, C) corresponds to a different data production rate scenario as per Table 4.

heuristic outperforms the proximity heuristic in most of the scenarios and has
the same performance in all the rest; it is also optimal or close to optimal for
sufficient service hosting capacity of the nodes.

The difference between the two heuristics is significant in column A of Fig-
ure 6, where there is greater asymmetry in the production rates of the services
that send input data to the same processing service. This is because the pro-
posed heuristic tends to map each processing service on nodes that are closer to
the source with the higher rate, while the proximity heuristic picks hosts that
are located between the sources ignoring their production rates. An important
observation is that the latter does not take advantage of increased resource avail-
ability of the nodes. The reason is that if the sources of a processing service are
located in different subtrees of the wireless network, the service will be placed on
the root node of these subtrees, or (if this does not have sufficient resources) on
a node that is even closer to the DFS or on the DFS itself. Apart from achieving
only a small wireless traffic reduction vs DFSonly, this fails to exploit the hosting
capacity of the subtrees. In contrast, the proposed heuristic achieves consistently
better deployments as the node hosting capacity increases. More specifically, the
proximity heuristic reduces the wireless traffic merely by 8% - 10.2% vs DFSonly,
whereas the proposed heuristic achieves a substantial reduction of 36% - 51%,
up to 5x more improved deployment vs the simple proximity heuristic. In fact,
in scenarios 1A and 2A, the proposed heuristic manages to find the optimal

Adaptive Deployment of Application Processing Pipelines 15

solution already when the nodes have hosting capacity 3, while in scenario 3A
it produces a service-to-node mapping that is very close to the optimal, with a
difference of just 6% and 2% for capacity 3 and 4, respectively.

In the column B of Figure 6 showing the results for the Rates B scenarios,
data rate asymmetry exists only between services X.5 and X.6 that produce data
used as input for X.7. As a consequence, even the optimal heuristic achieves a
rather small reduction of wireless traffic vs DFSonly. This indicates that there
is only a small improvement opportunity. Therefore, both the proposed heuris-
tic and the proximity heuristic get stuck in local optima, failing to improve the
service-to-node mapping when the capacity of the nodes increases. As an excep-
tion, in scenario 3B, the proposed heuristic produces an improved deployment
plan when capacity increases from 2 to 3. Notably, the proposed heuristic again
outperforms the proximity heuristic in all cases (except one where they produce
equal service-to-node mappings). In cases where the service hosting capacity is
4, it achieves a traffic reduction of up to 10.7% - 14% vs DFSonly, while the
proximity heuristic achieves a reduction of just 7.1% - 10%. These small im-
provements are justified given the small room for improvement. Nevertheless,
the proposed heuristic manages to perform close to optimal in all cases where
the capacity is larger than 2, producing deployment plans that are on average
about 1.4x better than those of the Proximity heuristic.

In column C of Figure 6, the proposed heuristic but also the simpler proximity
heuristic both produce optimal deployment plans in all cases. This is because
there is full symmetry in the data rates between the services that produce data
for the same processing service, hence there is no benefit in placing a processing
service closer to one of its sources. As a result, for all processing services whose
sources are hosted on nodes in different subtrees of the routing hierarchy, the best
hosting option is to host them on the node that is the root of the these subtrees.
In several cases, the best hosting option for such services is the DFS itself, which
has infinite hosting capacity. In turn, this relaxes the capacity pressure on all
other nodes, which can host the remaining services optimally.

4.4 Adaptation

The system configuration may vary during the lifetime of an application process-
ing pipeline, which may be required to run for a very long time. For example,
the system administrator may wish to increase the rate at which sensor services
sample the respective sensors or the rate at which processing services generate
data upstream towards the DFS or other processing services. Such changes may
render the current service deployment non-optimal.

In the next set of experiments, we explore the inefficiency of static service
placement in case of changes in the system configuration. To this end, we use
sensor placement A from Table 3 and a range of different system configurations,
given in Table 5, regarding the data rates of each service in the application
processing pipelines running in the system.

Figure 7 shows the results for the scenario where the system starts from
configuration 1 and successively goes through configurations 2 to 8. The initial

16 G. Polychronis et al.

Table 5: Different data rate configurations for the two application pipelines.

Services Data Rate Configurations (msg/s)
1 2 3 4 5 6 7 8

X.1 1 1 1 1 0.25 0.25 0.25 0.25
X.2 0.25 0.25 0.25 0.25 1 1 1 1
X.3 1 1 0.25 0.25 1 1 0.25 0.25
X.4 0.25 0.25 1 1 0.25 0.25 1 1
X.5 1 0.25 1 0.25 1 0.25 1 0.25
X.6 0.25 1 0.25 1 0.25 1 0.25 1
X.7 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

service deployment plan as produced by the Mapper (using Algorithm 1) is op-
timal for the first configuration. The red line plots the wireless traffic assuming
this deployment remains static throughout all configuration changes. As a refer-
ence, the black line shows the wireless traffic for DFSonly; this remains constant
because the sum of the service data rates is the same in all configurations and
all processing services are placed on the DFS. One can clearly observe that the
initial deployment can become significantly inefficient depending on the system
configuration changes that occur in the sequel, up to 2.3x worse than DFSonly.

As mentioned in Section 3, the Mapper can be configured to adapt service
placement by invoking the Deployer if the estimated improvement exceeds a
given threshold. Figure 7 shows the resulting wireless traffic for such an adaptive
deployment using three different threshold settings 0, 0.3 and 0.5 (green, blue
and purple dashed line, respectively). Lower thresholds lead to more frequent
adaptations of service deployment. The most aggressive threshold of 0 triggers
an adaptation at every configuration change and manages to reduce wireless
traffic up to 3.6x vs a static service deployment. Larger thresholds naturally lead
to fewer transitions, resulting in higher wireless traffic for certain configurations.
Note that the 0.5 threshold is marginally beneficial, as in some cases it does not
manage to keep the load of the wireless network traffic below that of DFSonly.
Overall, these results illustrate the importance of adapting the placement of
application services to the current system configuration.

Fig. 7: Wireless traffic for the different data rate configurations in Table 5.

Adaptive Deployment of Application Processing Pipelines 17

4.5 Adaptation delay

Adapting the service placement can reduce the wireless network traffic, but may
also lead to application downtime. Namely, the data processing pipeline will
remain suspended as long one of its services is being moved to another host. In
the worst case, this may extend to the full duration of the adaptation phase.
Next, we discuss how to compute a rough estimate of the adaptation delay.

Let startT (k) and stopT (k) be the time needed for the Deployer to perform
a service start and stop operation on a node that is k hops away from the
DFS (recall that these operations translate to a sequence of file transfer, service
start/stop, and check commands to the target node). We have experimentally
measured these overheads in our lab setup. For startT we assume a service
description file of 400 bytes, which is typical for the services running in practice.

Further, let P.s.host denote the node that hosts service s under placement P ,
function hops(P, s) = hops(DFS,P.s.host) return the number of hops between
the DFS and P.s.host, and P1

⊗
P2 = {s : P1.s.host ̸= P2.s.host} denote the

set of services that have a different host in two placements P1 and P2. Then, the
total time that is required to perform an adaptation, i.e., to make the transition
from service placement P1 to a new placement P2, can be calculated as

adaptT (P1, P2) =
∑

s∈P1
⊗

P2

stopT (hops(P1, s)) + startT (hops(P2, s))

Table 6 gives the estimated adaptation delay for the sequence of configuration
changes in Figure 7 for each of the adaptation thresholds. Recall that thresholds
0.3 and 0.5 do not lead to an adaptation in every configuration change hence in
some cases the delay is 0. As it can be seen, the overhead is quite small, in the
order of a few tens of seconds. This is perfectly acceptable for systems where
major configuration changes are expected to be rather infrequent.

Table 6: Adaptation delay for the series of configuration changes in Figure 7.

Threshold Adaptation Delay (sec)
1 → 2 2 → 3 3 → 4 4 → 5 5 → 6 6 → 7 7 → 8

0.0 7.5 14.8 7.5 21.6 7.5 14.8 7.5
0.3 7.5 14.8 7.5 21.6 0 7.8 7.5
0.5 0 7.6 0 21 0 0 15

We have verified through experiments in our testbed that the estimated delay
produced with the above formula is very close to the time it takes to perform the
corresponding adaptation of service placement in reality, with a small inaccuracy
of about 5%. Consequently, the formula is a useful tool which can be used by
the system administrator to anticipate the delay of a proposed adaptation and
the potential downtime of the respective application pipelines.

18 G. Polychronis et al.

5 Related Work

There is a significant amount of work focusing in the placement of operators
(processing tasks) in the fog/edge also combined with or without the cloud.
Such applications have the form of directed acyclic graphs, where the nodes are
the operators and edges denote the producer-consumer relationships between
operators. The authors of [14] study the problem of operator placement for the
edge-cloud with the objective to optimize the end-to-end latency and deploy-
ment costs. They propose a MILP model with a technique to reduce the search
space. Similarly, [13] has the objective to minimize the latency and proposes a
heuristic to tackle the problem with two variants for reducing the search space
to take faster placement decisions. In [10], different placement heuristics, such
as a greedy approach and a local search starting from an initial greedily-built
solution, are presented and evaluated for different single or multi objective goals
including application response time, application availability and network usage.
[7] deals with a similar problem, which is placing operators in the fog but in
addition optimizes the placement periodically. There are also works addressing
the placement problem with the objective to reduce the amount of data sent
over the network. In [11], authors focus on the problem of service placement in
the fog while trying to minimize the application delay, network usage and cloud
placements. They propose a genetic algorithm to tackle the problem. Another
placement problem is studied in [8] where multiple sensors generate data and
the goal is to find fog nodes close to the sources to store the data sources, so
that the network usage is minimized. The proposed solution considers the gen-
eration rate of each data type and picks for each placement the best node given
various centrality indexes. Our work also focuses in a placement problem where
application-level data processing pipelines are deployed inside a WSN so that the
wireless traffic is minimized. Similarly to [13] and [8] we propose a solution that
greedily picks the most suitable node for the placement of each processing task,
but this is tailored for our particular system/application model and objective.

Another topic well studied in the literature is data aggregation in sensor net-
works [3]. Aggregators are placed inside the network with most common objec-
tives to reduce the traffic and extend the network’s lifetime. A data aggregation
approach is studied in [12] for networks arranged in clusters. Authors in [18]
consider networks where sensors generate different type of data, while data of
the same type can be aggregated. They propose a protocol to route the data
which also considers the aggregation of the data. These works aim to extend the
lifetime of the network. In [17], the objective is to improve the service latency
by reducing the amount of data transferred by applying in-network filtering. [6]
proposes an in-network outlier detection. Another in-network approach is inves-
tigated in [9] with objective to increase transmission opportunities. Our work
also supports processing data inside the network to reduce the messages sent
over the wireless network, via application-level services that can be dynamically
deployed on and moved between nodes.

There is a wide range of work on the dynamic deployment of code in WSNs.
In [4] IoT devices execute scripts on a lightweight container that runs on top

Adaptive Deployment of Application Processing Pipelines 19

of a lightweight OS. Sensorware [5] provides a runtime environment for flexibly
deploying and executing application-level scripts. In the middleware presented
in [19] application tasks extend the basic system functionality, while in [16] the
application has the form of agents that are dynamically instantiated in a WSN
to support in-network processing. In these works, the application logic is given
in the form of scripts, while in our case the application services are captured in
the form of purely declarative descriptions that are parsed on the node in order
to configure a generic service execution engine so that it performs the required
sensing and processing operations. Notably, the so-called generic agents in [16]
are similar to the data processing services in our work, allowing such application
logic to change its location in the WSN so as to reduce wireless network traffic.

6 Conclusion

We have presented work on how to automatically deploy and adapt the placement
of application-level data processing pipelines in a wireless network of embedded
sensor devices so as to minimize the data traffic over the wireless network. Our
evaluation shows that optimized deployment can reduce radically wireless traffic
up to 51% vs a simple centralized placement at the root of the wireless network,
and is close to optimal in most cases. Also, adapting the deployment to system
configuration changes can reduce the wireless traffic up to 3.6x vs a previously
optimal placement that remains static during execution, while such adaptations
can be performed fast, within just a few tens of seconds.

Our software architecture is modular, allowing extensions to be introduced in
a flexible way. For instance, the service-to-node mapping logic could be changed
to balance the services running on the nodes and the amount of data transmitted
by each node to achieve an even resource utilization and energy consumption.
Another possible optimization objective is to minimize contention on the wireless
channel or to reduce the end-to-end latency of data production.

Acknowledgments

This work has been co-financed by the European Union- NextGenerationEU and
Greek national funds through the Greece 2.0 National Recovery and Resilience
Plan, under the call RESEARCH-CREATE-INNOVATE, project VEPIT – Ves-
sel Energy Profiling based on IoT (code: TAEDK-06165).

References

1. Mqtt. https://mqtt.org/
2. zeromq. https://zeromq.org/
3. Abbasian Dehkordi, S., Farajzadeh, K., Rezazadeh, J., Farahbakhsh, R., San-

drasegaran, K., Abbasian Dehkordi, M.: A survey on data aggregation techniques
in iot sensor networks. Wireless Networks 26, 1243–1263 (2020)

https://mqtt.org/
https://zeromq.org/

20 G. Polychronis et al.

4. Baccelli, E., Doerr, J., Kikuchi, S., Padilla, F.A., Schleiser, K., Thomas, I.: Script-
ing over-the-air: Towards containers on low-end devices in the internet of things.
In: International Conference on Pervasive Computing and Communications Work-
shops (PerCom Workshops). pp. 504–507. IEEE (2018)

5. Boulis, A., Han, C.C., Shea, R., Srivastava, M.B.: Sensorware: Programming sensor
networks beyond code update and querying. Pervasive and Mobile Computing 3(4),
386–412 (2007)

6. Branch, J.W., Giannella, C., Szymanski, B., Wolff, R., Kargupta, H.: In-network
outlier detection in wireless sensor networks. Knowledge and information systems
34, 23–54 (2013)

7. Hiessl, T., Karagiannis, V., Hochreiner, C., Schulte, S., Nardelli, M.: Optimal place-
ment of stream processing operators in the fog. In: 3rd International Conference
on Fog and Edge Computing (ICFEC). pp. 1–10. IEEE (2019)

8. Lera, I., Guerrero, C., Juiz, C.: Comparing centrality indices for network usage
optimization of data placement policies in fog devices. In: 3rd International Con-
ference on Fog and Mobile Edge Computing (FMEC). pp. 115–122. IEEE (2018)

9. Lin, S.C., Chen, K.C.: Improving spectrum efficiency via in-network computations
in cognitive radio sensor networks. IEEE Transactions on wireless communications
13(3), 1222–1234 (2014)

10. Nardelli, M., Cardellini, V., Grassi, V., Presti, F.L.: Efficient operator placement
for distributed data stream processing applications. IEEE Transactions on Parallel
and Distributed Systems 30(8), 1753–1767 (2019)

11. Sarrafzade, N., Entezari-Maleki, R., Sousa, L.: A genetic-based approach for service
placement in fog computing. The Journal of Supercomputing 78(8), 10854–10875
(2022)

12. Shobana, M., Sabitha, R., Karthik, S.: Cluster-based systematic data aggregation
model (csdam) for real-time data processing in large-scale wsn. Wireless Personal
Communications 117, 2865–2883 (2021)

13. da Silva Veith, A., de Assuncao, M.D., Lefevre, L.: Latency-aware strategies for
deploying data stream processing applications on large cloud-edge infrastructure.
IEEE transactions on cloud computing (2021)

14. de Souza, F.R., da Silva Veith, A., Dias de Assunção, M., Caron, E.: Scalable joint
optimization of placement and parallelism of data stream processing applications
on cloud-edge infrastructure. In: Service-Oriented Computing: 18th International
Conference. pp. 149–164. Springer (2020)

15. Stanford-Clark, A., Truong, H.L.: Mqtt for sensor networks (mqtt-sn) protocol
specification. International business machines (IBM) Corporation version 1(2), 1–
28 (2013)

16. Tziritas, N., Georgakoudis, G., Lalis, S., Paczesny, T., Domaszewicz, J., Lampsas,
P., Loukopoulos, T.: Middleware mechanisms for agent mobility in wireless sensor
and actuator networks. In: 3rd ICST Conference on Sensor Systems and Software
(S-Cube). pp. 30–44. Springer (2012)

17. Wu, H., He, J., Tömösközi, M., Xiang, Z., Fitzek, F.H.: In-network processing
for low-latency industrial anomaly detection in softwarized networks. In: Global
Communications Conference (GLOBECOM). pp. 01–07. IEEE (2021)

18. Yun, W.K., Yoo, S.J.: Q-learning-based data-aggregation-aware energy-efficient
routing protocol for wireless sensor networks. IEEE Access 9, 10737–10750 (2021)

19. Zhang, J., Ma, M., He, W., Wang, P.: On-demand deployment for iot applications.
Journal of Systems Architecture 111, 101794 (2020)

	Adaptive Deployment of Application-level Sensing and Data Processing Pipelines in a Wireless Network of Embedded Devices

