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ABSTRACT

The management of a computation node that is a member of a large cluster spanning the cloud-
edge continuum is a cumbersome task for human operators. There are numerous decisions that
must be made, considering many variables that come from different environments. We propose
an autonomic management system for the single node that uses machine learning methods to
optimize various configuration options. We have developed a prototype that includes the neces-
sary configuration mechanisms for many management aspects, including a custom middleware
for the utilization of acceleration units. We also have integrated a telemetry system to collect data
for machine-learning models. This prototype offers the necessary study ground to explore and
develop machine learning models that will interact with the configuration mechanisms and the
node environment.
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1 Introduction

The advancement of Edge Computing and the broader use of IoT devices have increased the
management complexity of the underlying infrastructure. Applications may be deployed
on a cluster of nodes that are heterogeneous and physically distributed. Different hardware
architectures and unique characteristics of each node present the biggest challenges for ap-
plication development, deployment, and system management. Container technology was
developed to handle the issues of the application lifecycle and many tools have emerged
around the container ecosystem that implement different solutions, managing high-level
aspects, such as the application version that is deployed to specific nodes. We adopt this
technology and assume that the applications run in containers. There are also lower-level
configuration mechanisms, that reach the level of the physical operation properties of the
system. We try to focus on configuration options between those two boundaries.

There are works in the literature that target specific configurations parameters, such as
the frequency and voltage of a CPU [KKA™19], [KALB22] and DRAM [KAB*20]. Another
aspect of the node level that has been studied, is the exploitation of container-specific con-
tigurations like the CPU-pinning functionality, to improve performance and cache behavior
[SDBS20]. The existence of hardware accelerators on edge devices has also been a topic that

2E-mail: { patras, spournar } @uth.gr



has been studied, and some works try to optimize their usage in the container environment
[PCK™21].

To the best of our knowledge, no work tackles the problem of configuring multiple op-
tions in tandem. An indicative example would be the following: for a given application with
specific requirements we must decide on (i) the application version; (ii) the CPU affinity of
the application container; (iii) the use of an accelerator from a container; (iv) the frequency
of the computation and accelerator units. It becomes apparent that a human operator might
not be able to cope with the complexity of the management, especially in the case of many
different managed nodes. An autonomic system, on the other hand, can adapt to any en-
vironmental or application changes without the intervention of a human operator, keeping
the system operational.

In this work, we consider a computing system that includes heterogeneous nodes span-
ning the cloud-edge continuum, and focus on the operation of a single node. The main con-
tribution of our work is the development of a managing system for the node that uses Ma-
chine Learning for its operation. The design of the system has been inspired by the paradigm
of an autonomic system that follows 4 steps: (i) monitor the managed system; (ii) analyze the
data; (iii) plan a new configuration if needed; and (iv) execute the new configuration if pos-
sible [GSCO09]. The analysis and planning steps include the use of machine learning models.
The managing system uses and sends commands to available configuration mechanisms for
the different subsystems and is also designed to include necessary interfaces to interact with
different machine learning models. Due to being part of a cluster, the managing system also
receives input from the external environment.

2 An ML-ready managing system

Figure |1/ shows the 3 main entities of the managing system: i) Telemetry Collector, ii) Ma-
chine Learning Models, and iii) Configuration Mechanisms. The workflow of the system
starts by collecting telemetry data from different sources, including the application, trans-
forming, and then exporting it to suitable machine learning models. The models analyze the
data and generate a new plan for the configuration mechanisms to apply.

Our approach is to use different machine learning models that produce configuration
plans for a single or a group of configuration mechanisms and is based on the fact that ac-
tions from a specific mechanism are best correlated with different features that are extracted
from specific telemetry data, compared to a one-size fits all alternative. Machine learning
models need adequate data quantity and quality for their training. A computing system can
produce telemetry data from every layer of its software and hardware stack, containing a lot
of noise and must be normalized to ease the ingestion into an ML model. We use a suitable
telemetry implementation that includes the necessary data collection and transformations
[OTE]. Our system includes arbitrary application-level metrics that record the application
performance.

A general overview of the proposed mechanisms that can be used in a single node is also
illustrated in Figure [l The main element is the general computation unit (e.g. CPU). Our
work focuses on exploring the energy efficiency space by configuring the frequency or the
power cap of those units.

Hardware acceleration units are widely used on many kinds of edge nodes and not only
in data centers. Our work explores the smart and transparent use of hardware accelerators.
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Figure 1: Node-level architecture of the proposed managing system

This choice is made initially when a container is placed on the node, and then necessary
changes might be made at runtime. We use a custom middleware, that abstracts out the ac-
tual implementation of a computation task for different hardware accelerators (GPU, FPGA),
and offer a generic API to the application. The application code calls a generic method that
performs the required functionality, and the middleware decides in every call what accel-
erator will be used. This assumes that the actual hardware acceleration implementations of
each computation kernel is available and installed in each node.

Another aspect of container orchestration that can be managed is the affinity of a con-
tainer and its resource requirements. Affinity enforcement mechanisms can pin a container
to specific CPU cores. This functionality can help to improve performance for specific tasks
by leveraging better cache behavior. Resource requirements, on the other hand, are usually
managed from the orchestrator, where an application container explicitly defines its own
hardware requirements, such as the CPU core count and memory quantity. The proposed
system provides the necessary functionality to make changes at runtime, changing the given
resources for each container.

Sensors are available mostly on smart edge nodes with different characteristics and us-
ages. The kind of sensors can vary from a simple camera module to environmental condi-
tions sensing modules. The configuration mechanisms contain the necessary functionality to
offer abstract configuration options, such as the sensing frequency, to the machine learning
models.



3 Future work

We have developed a prototype where the proposed managing system can be tested with
the appropriate software stack implementing the necessary telemetry pipeline and config-
uration mechanisms, as shown in Section [2} The next step is to explore, develop and test
suitable machine-learning models that will exploit the presented mechanisms. Another as-
pect that needs further research, is the fact that the node-level operation is not only affected
by the node-level system and application requirements but also by an external environment.
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